J. Griff-McMahon, S. Malko, V. Valenzuela-Villaseca, C. A. Walsh, G. Fiksel, M. J. Rosenberg, D. B. Schaeffer, W. Fox
{"title":"Measurements of extended magnetic fields in laser-solid interaction","authors":"J. Griff-McMahon, S. Malko, V. Valenzuela-Villaseca, C. A. Walsh, G. Fiksel, M. J. Rosenberg, D. B. Schaeffer, W. Fox","doi":"10.1103/physrevresearch.6.033312","DOIUrl":null,"url":null,"abstract":"Magnetic fields generated from a laser-foil interaction are measured with high fidelity using a proton radiography scheme with <i>in situ</i> x-ray fiducials. In contrast to prior findings under similar experimental conditions, this technique reveals the self-generated, Biermann-battery fields extend beyond the edge of the expanding plasma plume to a radius of over 3.5 mm by <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>t</mi></math>=<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo>+</mo><mn>1.4</mn></math> ns. An analysis of two monoenergetic proton populations confirms that proton deflection is dominated by magnetic fields far from the interaction (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>></mo><mn>2</mn></mrow></math> mm) and electric fields are insignificant. The results are not captured in state-of-the-art magnetohydrodynamics simulations and suggest the need to consider additional physics mechanisms for the magnetic field generation and transport in laser-solid interactions.","PeriodicalId":20546,"journal":{"name":"Physical Review Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevresearch.6.033312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic fields generated from a laser-foil interaction are measured with high fidelity using a proton radiography scheme with in situ x-ray fiducials. In contrast to prior findings under similar experimental conditions, this technique reveals the self-generated, Biermann-battery fields extend beyond the edge of the expanding plasma plume to a radius of over 3.5 mm by = ns. An analysis of two monoenergetic proton populations confirms that proton deflection is dominated by magnetic fields far from the interaction ( mm) and electric fields are insignificant. The results are not captured in state-of-the-art magnetohydrodynamics simulations and suggest the need to consider additional physics mechanisms for the magnetic field generation and transport in laser-solid interactions.