Constructing cospectral graphs via regular rational orthogonal matrix with level two and three

Lihuan Mao, Fu Yan
{"title":"Constructing cospectral graphs via regular rational orthogonal matrix with level two and three","authors":"Lihuan Mao, Fu Yan","doi":"arxiv-2409.09998","DOIUrl":null,"url":null,"abstract":"Two graphs $G$ and $H$ are \\emph{cospectral} if the adjacency matrices share\nthe same spectrum. Constructing cospectral non-isomorphic graphs has been\nstudied extensively for many years and various constructions are known in the\nliterature, e.g. the famous GM-switching method. In this paper, we shall\nconstruct cospectral graphs via regular rational orthogonal matrix $Q$ with\nlevel two and three. We provide two straightforward algorithms to characterize\nwith adjacency matrix $A$ of graph $G$ such that $Q^TAQ$ is again a\n(0,1)-matrix, and introduce two new switching methods to construct families of\ncospectral graphs which generalized the GM-switching to some extent.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Two graphs $G$ and $H$ are \emph{cospectral} if the adjacency matrices share the same spectrum. Constructing cospectral non-isomorphic graphs has been studied extensively for many years and various constructions are known in the literature, e.g. the famous GM-switching method. In this paper, we shall construct cospectral graphs via regular rational orthogonal matrix $Q$ with level two and three. We provide two straightforward algorithms to characterize with adjacency matrix $A$ of graph $G$ such that $Q^TAQ$ is again a (0,1)-matrix, and introduce two new switching methods to construct families of cospectral graphs which generalized the GM-switching to some extent.
通过二级和三级规则有理正交矩阵构建余谱图
如果两个图 $G$ 和 $H$ 的邻接矩阵具有相同的频谱,那么这两个图就是同谱图。多年来,人们一直在广泛研究共谱非同构图的构造,文献中也有各种已知的构造,例如著名的 GM 切换法。在本文中,我们将通过具有二级和三级的正则有理正交矩阵 $Q$ 来构造共谱图。我们提供了两种直截了当的算法来描述图 $G$ 的邻接矩阵 $A$,从而使 $Q^TAQ$ 又是一个(0,1)矩阵,并引入了两种新的切换方法来构造共谱图族,这在一定程度上概括了 GM 切换法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信