Uniform resolvent estimates, smoothing effects and spectral stability for the Heisenberg sublaplacian

Luca Fanelli, Haruya Mizutani, Luz Roncal, Nico Michele Schiavone
{"title":"Uniform resolvent estimates, smoothing effects and spectral stability for the Heisenberg sublaplacian","authors":"Luca Fanelli, Haruya Mizutani, Luz Roncal, Nico Michele Schiavone","doi":"arxiv-2409.11943","DOIUrl":null,"url":null,"abstract":"We establish global bounds for solutions to stationary and time-dependent\nSchr\\\"odinger equations associated with the sublaplacian $\\mathcal L$ on the\nHeisenberg group, as well as its pure fractional power $\\mathcal L^s$ and\nconformally invariant fractional power $\\mathcal L_s$. The main ingredient is a\nnew abstract uniform weighted resolvent estimate which is proved by using the\nmethod of weakly conjugate operators -- a variant of Mourre's commutator method\n-- and Hardy's type inequalities on the Heisenberg group. As applications, we\nshow Kato-type smoothing effects for the time-dependent Schr\\\"odinger equation,\nand spectral stability of the sublaplacian perturbed by complex-valued decaying\npotentials satisfying an explicit subordination condition. In the local case\n$s=1$, we obtain uniform estimates without any symmetry or derivative loss,\nwhich improve previous results.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We establish global bounds for solutions to stationary and time-dependent Schr\"odinger equations associated with the sublaplacian $\mathcal L$ on the Heisenberg group, as well as its pure fractional power $\mathcal L^s$ and conformally invariant fractional power $\mathcal L_s$. The main ingredient is a new abstract uniform weighted resolvent estimate which is proved by using the method of weakly conjugate operators -- a variant of Mourre's commutator method -- and Hardy's type inequalities on the Heisenberg group. As applications, we show Kato-type smoothing effects for the time-dependent Schr\"odinger equation, and spectral stability of the sublaplacian perturbed by complex-valued decaying potentials satisfying an explicit subordination condition. In the local case $s=1$, we obtain uniform estimates without any symmetry or derivative loss, which improve previous results.
海森堡亚拉普拉奇的均匀分解估计、平滑效应和频谱稳定性
我们建立了与海森堡群上的子拉普拉矢 $\mathcal L$ 以及其纯分数幂 $\mathcal L^s$ 和共形不变分数幂 $\mathcal L_s$ 相关的静态和时变薛定谔方程解的全局边界。其主要成分是一种新的抽象均匀加权解析估计,它是通过使用弱共轭算子方法--穆尔换元法的一种变体--和海森堡群上的哈代型不等式来证明的。作为应用,我们展示了时变薛定谔方程的卡托型平滑效应,以及满足显式隶属条件的复值衰减势扰动的次拉普拉斯的谱稳定性。在s=1的局部情况下,我们得到了无对称性或导数损失的均匀估计,从而改进了之前的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信