{"title":"A theoretical framework for linking hospitals longitudinally: demonstrated using German Hospital Quality Reports 2016–2020","authors":"Limei Ji, Max Geraedts, Werner de Cruppé","doi":"10.1186/s12874-024-02317-z","DOIUrl":null,"url":null,"abstract":"In longitudinal health services research, hospital identification using an ID code, often supplemented with several additional variables, lacks clarity regarding representativeness and variable influence. This study presents an operational method for hospital identity delimitation and a novel longitudinal identification approach, demonstrated using a case study. The conceptualisation considers hospitals as evolving entities, identifying “similar enough” pairs across two time points using an automated similarity matrix. This method comprises key variable selection, similarity scoring, and tolerance threshold definition, tailored to data source characteristics and clinical relevance. This linking method is tested by applying the identification of minimum caseload requirements-related German hospitals, utilizing German Hospital Quality Reports (GHQR) 2016–2020. The method achieved a success rate (min: 97.9% - max: 100%, mean: 99.9%) surpassing traditional hospital ID-code linkage (min: 91.5% - max: 98.8%, mean: 96.6%), with a remarkable 99% reduction in manual work through automation. This method, rooted in a comprehensive understanding of hospital identities, offers an operational, automated, and customisable process serving diverse clinical topics. This approach has the advantage of simultaneously considering multiple variables and systematically observing temporal changes in hospitals. It also enhances the precision and efficiency of longitudinal hospital identification in health services research.","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"126 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-024-02317-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
In longitudinal health services research, hospital identification using an ID code, often supplemented with several additional variables, lacks clarity regarding representativeness and variable influence. This study presents an operational method for hospital identity delimitation and a novel longitudinal identification approach, demonstrated using a case study. The conceptualisation considers hospitals as evolving entities, identifying “similar enough” pairs across two time points using an automated similarity matrix. This method comprises key variable selection, similarity scoring, and tolerance threshold definition, tailored to data source characteristics and clinical relevance. This linking method is tested by applying the identification of minimum caseload requirements-related German hospitals, utilizing German Hospital Quality Reports (GHQR) 2016–2020. The method achieved a success rate (min: 97.9% - max: 100%, mean: 99.9%) surpassing traditional hospital ID-code linkage (min: 91.5% - max: 98.8%, mean: 96.6%), with a remarkable 99% reduction in manual work through automation. This method, rooted in a comprehensive understanding of hospital identities, offers an operational, automated, and customisable process serving diverse clinical topics. This approach has the advantage of simultaneously considering multiple variables and systematically observing temporal changes in hospitals. It also enhances the precision and efficiency of longitudinal hospital identification in health services research.
期刊介绍:
BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.