Observation of Interface Piezoelectricity in Superconducting Devices on Silicon

Haoxin Zhou, Eric Li, Kadircan Godeneli, Zi-Huai Zhang, Shahin Jahanbani, Kangdi Yu, Mutasem Odeh, Shaul Aloni, Sinéad Griffin, Alp Sipahigil
{"title":"Observation of Interface Piezoelectricity in Superconducting Devices on Silicon","authors":"Haoxin Zhou, Eric Li, Kadircan Godeneli, Zi-Huai Zhang, Shahin Jahanbani, Kangdi Yu, Mutasem Odeh, Shaul Aloni, Sinéad Griffin, Alp Sipahigil","doi":"arxiv-2409.10626","DOIUrl":null,"url":null,"abstract":"The evolution of superconducting quantum processors is driven by the need to\nreduce errors and scale for fault-tolerant computation. Reducing physical qubit\nerror rates requires further advances in the microscopic modeling and control\nof decoherence mechanisms in superconducting qubits. Piezoelectric interactions\ncontribute to decoherence by mediating energy exchange between microwave\nphotons and acoustic phonons. Centrosymmetric materials like silicon and\nsapphire do not display piezoelectricity and are the preferred substrates for\nsuperconducting qubits. However, the broken centrosymmetry at material\ninterfaces may lead to piezoelectric losses in qubits. While this loss\nmechanism was predicted two decades ago, interface piezoelectricity has not\nbeen experimentally observed in superconducting devices. Here, we report the\nobservation of interface piezoelectricity at an aluminum-silicon junction and\nshow that it constitutes an important loss channel for superconducting devices.\nWe fabricate aluminum interdigital surface acoustic wave transducers on silicon\nand demonstrate piezoelectric transduction from room temperature to millikelvin\ntemperatures. We find an effective electromechanical coupling factor of\n$K^2\\approx 2 \\times 10^{-5}\\%$ comparable to weakly piezoelectric substrates.\nWe model the impact of the measured interface piezoelectric response on\nsuperconducting qubits and find that the piezoelectric surface loss channel\nlimits qubit quality factors to $Q\\sim10^4-10^8$ for designs with different\nsurface participation ratios and electromechanical mode matching. These results\nidentify electromechanical surface losses as a significant dissipation channel\nfor superconducting qubits, and show the need for heterostructure and phononic\nengineering to minimize errors in next-generation superconducting qubits.","PeriodicalId":501226,"journal":{"name":"arXiv - PHYS - Quantum Physics","volume":"197 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The evolution of superconducting quantum processors is driven by the need to reduce errors and scale for fault-tolerant computation. Reducing physical qubit error rates requires further advances in the microscopic modeling and control of decoherence mechanisms in superconducting qubits. Piezoelectric interactions contribute to decoherence by mediating energy exchange between microwave photons and acoustic phonons. Centrosymmetric materials like silicon and sapphire do not display piezoelectricity and are the preferred substrates for superconducting qubits. However, the broken centrosymmetry at material interfaces may lead to piezoelectric losses in qubits. While this loss mechanism was predicted two decades ago, interface piezoelectricity has not been experimentally observed in superconducting devices. Here, we report the observation of interface piezoelectricity at an aluminum-silicon junction and show that it constitutes an important loss channel for superconducting devices. We fabricate aluminum interdigital surface acoustic wave transducers on silicon and demonstrate piezoelectric transduction from room temperature to millikelvin temperatures. We find an effective electromechanical coupling factor of $K^2\approx 2 \times 10^{-5}\%$ comparable to weakly piezoelectric substrates. We model the impact of the measured interface piezoelectric response on superconducting qubits and find that the piezoelectric surface loss channel limits qubit quality factors to $Q\sim10^4-10^8$ for designs with different surface participation ratios and electromechanical mode matching. These results identify electromechanical surface losses as a significant dissipation channel for superconducting qubits, and show the need for heterostructure and phononic engineering to minimize errors in next-generation superconducting qubits.
硅基超导器件的界面压电观测
超导量子处理器的发展是由减少误差和扩展容错计算的需求驱动的。要降低物理量子比特错误率,就必须进一步推进超导量子比特退相干机制的微观建模和控制。压电相互作用通过介导微波光子和声波声子之间的能量交换来促进退相干。硅和蓝宝石等中心对称材料不显示压电性,是超导量子比特的首选基底。然而,材料界面的中心对称性被破坏可能会导致量子比特的压电损耗。虽然这种损耗机制早在二十年前就被预测到了,但在超导器件中还没有实验观测到界面压电现象。在这里,我们报告了在铝硅交界处观察到的界面压电现象,并证明它构成了超导器件的一个重要损耗通道。我们在硅上制造了铝间表面声波传感器,并演示了从室温到毫微克伏温度的压电传导。我们对测量到的界面压电响应对超导量子比特的影响进行了建模,发现对于具有不同表面参与比和机电模式匹配的设计,压电表面损耗通道将量子比特的品质因数限制在 $Q (sim10^4-10^8)。这些结果证明机电表面损耗是超导量子比特的一个重要耗散通道,并表明需要采用异质结构和声子工程来最大限度地减少下一代超导量子比特的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信