The Cramér-Rao approach and global quantum estimation of bosonic states

Masahito Hayashi, Yingkai Ouyang
{"title":"The Cramér-Rao approach and global quantum estimation of bosonic states","authors":"Masahito Hayashi, Yingkai Ouyang","doi":"arxiv-2409.11842","DOIUrl":null,"url":null,"abstract":"Quantum state estimation is a fundamental task in quantum information theory,\nwhere one estimates real parameters continuously embedded in a family of\nquantum states. In the theory of quantum state estimation, the widely used\nCram\\'er Rao approach which considers local estimation gives the ultimate\nprecision bound of quantum state estimation in terms of the quantum Fisher\ninformation. However practical scenarios need not offer much prior information\nabout the parameters to be estimated, and the local estimation setting need not\napply. In general, it is unclear whether the Cram\\'er-Rao approach is\napplicable for global estimation instead of local estimation. In this paper, we\nfind situations where the Cram\\'er-Rao approach does and does not work for\nquantum state estimation problems involving a family of bosonic states in a\nnon-IID setting, where we only use one copy of the bosonic quantum state in the\nlarge number of bosons setting. Our result highlights the importance of caution\nwhen using the results of the Cram\\'er-Rao approach to extrapolate to the\nglobal estimation setting.","PeriodicalId":501226,"journal":{"name":"arXiv - PHYS - Quantum Physics","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum state estimation is a fundamental task in quantum information theory, where one estimates real parameters continuously embedded in a family of quantum states. In the theory of quantum state estimation, the widely used Cram\'er Rao approach which considers local estimation gives the ultimate precision bound of quantum state estimation in terms of the quantum Fisher information. However practical scenarios need not offer much prior information about the parameters to be estimated, and the local estimation setting need not apply. In general, it is unclear whether the Cram\'er-Rao approach is applicable for global estimation instead of local estimation. In this paper, we find situations where the Cram\'er-Rao approach does and does not work for quantum state estimation problems involving a family of bosonic states in a non-IID setting, where we only use one copy of the bosonic quantum state in the large number of bosons setting. Our result highlights the importance of caution when using the results of the Cram\'er-Rao approach to extrapolate to the global estimation setting.
克拉梅尔-拉奥方法和玻色态的全局量子估计
量子态估计是量子信息论中的一项基本任务,即对连续嵌入量子态族中的实参进行估计。在量子态估计理论中,广泛使用的克拉姆-埃尔-拉奥(Cram/'er Rao)方法考虑了局部估计,给出了量子态估计的量子费雪信息终极精度边界。然而,实际应用场景并不需要提供太多关于待估算参数的先验信息,因此局部估算设置并不适用。一般来说,Cram\'er-Rao 方法是否适用于全局估计而非局部估计尚不清楚。在本文中,我们发现了克拉姆/埃尔-拉奥方法在涉及非 IID 背景下玻色态家族的量子态估计问题中适用和不适用的情况,在大量玻色子背景下,我们只使用了玻色量子态的一个副本。我们的结果凸显了在使用克拉姆/埃尔-拉奥方法的结果外推到全局估计环境时必须谨慎的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信