QUBO-based SVM for credit card fraud detection on a real QPU

Ettore Canonici, Filippo Caruso
{"title":"QUBO-based SVM for credit card fraud detection on a real QPU","authors":"Ettore Canonici, Filippo Caruso","doi":"arxiv-2409.11876","DOIUrl":null,"url":null,"abstract":"Among all the physical platforms for the realization of a Quantum Processing\nUnit (QPU), neutral atom devices are emerging as one of the main players. Their\nscalability, long coherence times, and the absence of manufacturing errors make\nthem a viable candidate.. Here, we use a binary classifier model whose training\nis reformulated as a Quadratic Unconstrained Binary Optimization (QUBO) problem\nand implemented on a neutral atom QPU. In particular, we test it on a Credit\nCard Fraud (CCF) dataset. We propose several versions of the model, including\nexploiting the model in ensemble learning schemes. We show that one of our\nproposed versions seems to achieve higher performance and lower errors,\nvalidating our claims by comparing the most popular Machine Learning (ML)\nmodels with QUBO SVM models trained with ideal, noisy simulations and even via\na real QPU. In addition, the data obtained via real QPU extend up to 24 atoms,\nconfirming the model's noise robustness. We also show, by means of numerical\nsimulations, how a certain amount of noise leads surprisingly to enhanced\nresults. Our results represent a further step towards new quantum ML algorithms\nrunning on neutral atom QPUs for cybersecurity applications.","PeriodicalId":501226,"journal":{"name":"arXiv - PHYS - Quantum Physics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Among all the physical platforms for the realization of a Quantum Processing Unit (QPU), neutral atom devices are emerging as one of the main players. Their scalability, long coherence times, and the absence of manufacturing errors make them a viable candidate.. Here, we use a binary classifier model whose training is reformulated as a Quadratic Unconstrained Binary Optimization (QUBO) problem and implemented on a neutral atom QPU. In particular, we test it on a Credit Card Fraud (CCF) dataset. We propose several versions of the model, including exploiting the model in ensemble learning schemes. We show that one of our proposed versions seems to achieve higher performance and lower errors, validating our claims by comparing the most popular Machine Learning (ML) models with QUBO SVM models trained with ideal, noisy simulations and even via a real QPU. In addition, the data obtained via real QPU extend up to 24 atoms, confirming the model's noise robustness. We also show, by means of numerical simulations, how a certain amount of noise leads surprisingly to enhanced results. Our results represent a further step towards new quantum ML algorithms running on neutral atom QPUs for cybersecurity applications.
基于 QUBO 的 SVM 在真实 QPU 上进行信用卡欺诈检测
在实现量子处理单元(QPU)的所有物理平台中,中性原子设备正在成为主要参与者之一。它们的可扩展性、长相干时间和无制造误差使其成为可行的候选器件。在这里,我们使用一个二元分类器模型,该模型的训练被重新表述为一个二次无约束二元优化(QUBO)问题,并在中性原子 QPU 上实现。我们特别在信用卡欺诈(CCF)数据集上对其进行了测试。我们提出了该模型的几个版本,包括在集合学习方案中利用该模型。通过比较最流行的机器学习(ML)模型和用理想的、有噪声的模拟训练出来的 QUBO SVM 模型,甚至是通过真实 QPU 训练出来的 QUBO SVM 模型,我们发现我们提出的版本之一似乎能实现更高的性能和更低的误差,从而验证了我们的说法。此外,通过真实 QPU 获得的数据可扩展到 24 个原子,这证实了模型的噪声鲁棒性。我们还通过数值模拟展示了一定量的噪声是如何出人意料地提高结果的。我们的研究成果代表了在中性原子 QPU 上运行新的量子 ML 算法,为网络安全应用迈出了新的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信