Enhancing Origin Prediction: Deep Learning Model for Diagnosing Premature Ventricular Contractions with Dual-Rhythm Analysis Focused on Cardiac Rotation

Kazutaka Nakasone, Makoto Nishimori, Masakazu Shinohara, Mitsuru Takami, Kimitake Imamura, Taku Nishida, Akira Shimane, Yasushi Oginosawa, Yuki Nakamura, Yasuteru Yamauchi, Ryudo Fujiwara, Hiroyuki Asada, Akihiro Yoshida, Kaoru Takami, Tomomi Akita, Takayuki Nagai, Philipp Sommer, Mustapha El Hamriti, Hiroshi Imada, Luigi Pannone, Andrea Sarkozy, Gian Battista Chierchia, Carlo de Asmundis, Kunihiko Kiuchi, Ken-ichi Hirata, Koji Fukuzawa
{"title":"Enhancing Origin Prediction: Deep Learning Model for Diagnosing Premature Ventricular Contractions with Dual-Rhythm Analysis Focused on Cardiac Rotation","authors":"Kazutaka Nakasone, Makoto Nishimori, Masakazu Shinohara, Mitsuru Takami, Kimitake Imamura, Taku Nishida, Akira Shimane, Yasushi Oginosawa, Yuki Nakamura, Yasuteru Yamauchi, Ryudo Fujiwara, Hiroyuki Asada, Akihiro Yoshida, Kaoru Takami, Tomomi Akita, Takayuki Nagai, Philipp Sommer, Mustapha El Hamriti, Hiroshi Imada, Luigi Pannone, Andrea Sarkozy, Gian Battista Chierchia, Carlo de Asmundis, Kunihiko Kiuchi, Ken-ichi Hirata, Koji Fukuzawa","doi":"10.1093/europace/euae240","DOIUrl":null,"url":null,"abstract":"Background Several algorithms can differentiate inferior axis premature ventricular contractions (PVCs) originating from the right side and left side on 12-lead electrocardiograms (ECGs). However, it is unclear whether distinguishing the origin should rely solely on PVC or incorporate sinus rhythm (SR). Aims We compared the Dual-Rhythm model (incorporating both SR and PVC) to the PVC model (using PVC alone), and quantified the contribution of each ECG lead in predicting the PVC origin for each cardiac rotation. Methods This multicenter study enrolled 593 patients from 11 centers—493 from Japan and Germany, and 100 from Belgium, which used as the external validation dataset. Using a hybrid approach combining a Resnet50-based convolutional neural network and a Transformer model, we developed two variants—the PVC and Dual-Rhythm models—to predict PVC origin. Results In the external validation dataset, the Dual-Rhythm model outperformed the PVC model in accuracy (0.84 vs. 0.74, respectively; p < 0.01), precision (0.73 vs. 0.55, respectively; p < 0.01), specificity (0.87 vs. 0.68, respectively; p < 0.01), area under the receiver operating characteristic curve (0.91 vs. 0.86, respectively; p = 0.03), and F1-Score (0.77 vs. 0.68, respectively; p = 0.03). The contributions to PVC origin prediction were 77.3% for PVC and 22.7% for the SR. However, in patients with counterclockwise rotation, SR had a greater contribution in predicting the origin of right-sided PVC. Conclusions Our deep learning-based model, incorporating both PVC and SR morphologies, resulted in a higher prediction accuracy for PVC origin. Considering SR is particularly important for predicting right-sided origin in patients with counterclockwise rotation.","PeriodicalId":11720,"journal":{"name":"EP Europace","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EP Europace","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/europace/euae240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background Several algorithms can differentiate inferior axis premature ventricular contractions (PVCs) originating from the right side and left side on 12-lead electrocardiograms (ECGs). However, it is unclear whether distinguishing the origin should rely solely on PVC or incorporate sinus rhythm (SR). Aims We compared the Dual-Rhythm model (incorporating both SR and PVC) to the PVC model (using PVC alone), and quantified the contribution of each ECG lead in predicting the PVC origin for each cardiac rotation. Methods This multicenter study enrolled 593 patients from 11 centers—493 from Japan and Germany, and 100 from Belgium, which used as the external validation dataset. Using a hybrid approach combining a Resnet50-based convolutional neural network and a Transformer model, we developed two variants—the PVC and Dual-Rhythm models—to predict PVC origin. Results In the external validation dataset, the Dual-Rhythm model outperformed the PVC model in accuracy (0.84 vs. 0.74, respectively; p < 0.01), precision (0.73 vs. 0.55, respectively; p < 0.01), specificity (0.87 vs. 0.68, respectively; p < 0.01), area under the receiver operating characteristic curve (0.91 vs. 0.86, respectively; p = 0.03), and F1-Score (0.77 vs. 0.68, respectively; p = 0.03). The contributions to PVC origin prediction were 77.3% for PVC and 22.7% for the SR. However, in patients with counterclockwise rotation, SR had a greater contribution in predicting the origin of right-sided PVC. Conclusions Our deep learning-based model, incorporating both PVC and SR morphologies, resulted in a higher prediction accuracy for PVC origin. Considering SR is particularly important for predicting right-sided origin in patients with counterclockwise rotation.
增强起源预测:利用以心脏旋转为重点的双节律分析诊断室性早搏的深度学习模型
背景 有几种算法可以区分 12 导联心电图(ECG)上源于右侧和左侧的下轴型室性早搏(PVC)。然而,目前还不清楚区分起源是仅依靠 PVC 还是结合窦性心律(SR)。目的 我们比较了双节律模型(同时包含 SR 和 PVC)和 PVC 模型(仅使用 PVC),并量化了每个心电图导联在预测每个心脏旋转的 PVC 起因方面的贡献。方法 这项多中心研究从 11 个中心招募了 593 名患者,其中 493 名来自日本和德国,100 名来自比利时,作为外部验证数据集。我们采用基于 Resnet50 的卷积神经网络和 Transformer 模型相结合的混合方法,开发了两个变体--PVC 模型和双节律模型--来预测 PVC 起源。01)、特异性(分别为 0.87 vs. 0.68;pamp &;lt;0.01)、接收者操作特征曲线下面积(分别为 0.91 vs. 0.86;p = 0.03)和 F1-Score (分别为 0.77 vs. 0.68;p = 0.03)。预测 PVC 起始点的贡献率为 77.3%,预测 SR 的贡献率为 22.7%。然而,在逆时针旋转的患者中,SR 对预测右侧 PVC 起因的贡献更大。结论 我们基于深度学习的模型结合了 PVC 和 SR 形态,对 PVC 起源的预测准确率更高。考虑 SR 对预测逆时针旋转患者的右侧起源尤为重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信