Conditional stability and regularization method for inverse source for distributed order time-fractional diffusion equation

IF 2.6 3区 数学
Yongbo Chen, Hao Cheng
{"title":"Conditional stability and regularization method for inverse source for distributed order time-fractional diffusion equation","authors":"Yongbo Chen, Hao Cheng","doi":"10.1007/s40314-024-02924-y","DOIUrl":null,"url":null,"abstract":"<p>This article is concerned with the problem of source identification for a distributed-order time-fractional diffusion equation (DTFDE). The uniqueness, ill-posedness and conditional stability estimate for the inverse source problem are demonstrated. Our main objective is to reconstruct the stable source term utilizing an iterative generalized quasi-reversibility method(IGQRM). In theory, an a priori and an a posteriori regularization parameter selection strategies are proposed to obtain the convergence estimates between the regularized solution and the exact solution. In numerical experiment, some numerical examples are presented to describe the stability and validity of our proposed regularization method.</p>","PeriodicalId":51278,"journal":{"name":"Computational and Applied Mathematics","volume":"12 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40314-024-02924-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article is concerned with the problem of source identification for a distributed-order time-fractional diffusion equation (DTFDE). The uniqueness, ill-posedness and conditional stability estimate for the inverse source problem are demonstrated. Our main objective is to reconstruct the stable source term utilizing an iterative generalized quasi-reversibility method(IGQRM). In theory, an a priori and an a posteriori regularization parameter selection strategies are proposed to obtain the convergence estimates between the regularized solution and the exact solution. In numerical experiment, some numerical examples are presented to describe the stability and validity of our proposed regularization method.

Abstract Image

分布阶时间分数扩散方程反源的条件稳定性和正则化方法
本文关注分布阶时间分数扩散方程(DTFDE)的源识别问题。本文论证了逆源问题的唯一性、非问题性和条件稳定性估计。我们的主要目标是利用迭代广义准可逆方法(IGQRM)重建稳定源项。理论上,提出了先验正则化参数选择策略和后验正则化参数选择策略,以获得正则化解和精确解之间的收敛估计值。在数值实验中,给出了一些数值实例来描述我们提出的正则化方法的稳定性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
11.50%
发文量
352
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信