Applications of generalized formable transform with $$\Psi $$ -Hilfer–Prabhakar derivatives

IF 2.6 3区 数学
Mohd Khalid, Ishfaq Ahmad Mallah, Ali Akgül, Subhash Alha, Necibullah Sakar
{"title":"Applications of generalized formable transform with $$\\Psi $$ -Hilfer–Prabhakar derivatives","authors":"Mohd Khalid, Ishfaq Ahmad Mallah, Ali Akgül, Subhash Alha, Necibullah Sakar","doi":"10.1007/s40314-024-02930-0","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces the <span>\\(\\Psi \\)</span>-formable integral transform, discusses the several essential properties and results—Convolution, <span>\\(\\Psi \\)</span>-formable transform of <i>t</i>th derivative, <span>\\(\\Psi \\)</span>-Riemann Liouville fractional integration and differentiation, <span>\\(\\Psi \\)</span>-Caputo fractional differentiation, <span>\\(\\Psi \\)</span>-Hilfer fractional differentiation, <span>\\(\\Psi \\)</span>-Prabhakar fractional integration and differentiation, and <span>\\(\\Psi \\)</span>-Hilfer–Prabhakar fractional derivatives. Next, we use the Fourier integral and <span>\\(\\Psi \\)</span>-Modifiable conversions to solve some Cauchy-type fractional differential equations using the generalized three-parameter Mittag–Leffler function and <span>\\(\\Psi \\)</span>-Hilfer–Prabhakar fractional derivatives.</p>","PeriodicalId":51278,"journal":{"name":"Computational and Applied Mathematics","volume":"33 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40314-024-02930-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces the \(\Psi \)-formable integral transform, discusses the several essential properties and results—Convolution, \(\Psi \)-formable transform of tth derivative, \(\Psi \)-Riemann Liouville fractional integration and differentiation, \(\Psi \)-Caputo fractional differentiation, \(\Psi \)-Hilfer fractional differentiation, \(\Psi \)-Prabhakar fractional integration and differentiation, and \(\Psi \)-Hilfer–Prabhakar fractional derivatives. Next, we use the Fourier integral and \(\Psi \)-Modifiable conversions to solve some Cauchy-type fractional differential equations using the generalized three-parameter Mittag–Leffler function and \(\Psi \)-Hilfer–Prabhakar fractional derivatives.

具有 $$\Psi $$ -Hilfer-Prabhakar 导数的广义可形成变换的应用
本文介绍了\(\Psi\)-可变积分变换,讨论了它的几个基本性质和结果--卷积、\(\Psi\)-tth导数的可变变换、\(\Psi\)-Riemann Liouville分式积分和微分、\卡普托分式微分、希尔费分式微分、布拉巴卡尔分式积分和微分,以及希尔费-布拉巴卡尔分式导数。接下来,我们使用傅里叶积分和( ( (Psi) ) )可调转换来利用广义三参数 Mittag-Leffler 函数和( ( ( (Psi) ) )-Hilfer-Prabhakar 分导数求解一些 Cauchy 型分微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
11.50%
发文量
352
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信