{"title":"Prediction of urban flood inundation using Bayesian convolutional neural networks","authors":"Xiang Zheng, Minling Zheng","doi":"10.1007/s00477-024-02814-z","DOIUrl":null,"url":null,"abstract":"<p>Urban flood risk management has been a hot issue worldwide due to the increased frequency and severity of floods occurring in cities. In this paper, an innovative modelling approach based on the Bayesian convolutional neural network (BCNN) was proposed to simulate the urban flood inundation, and to provide a reliable prediction of specific water depth. To develop the model, a series of historical rainfall data during the last 20 years were collected in Rushan China and the responding flood events were reproduced using physically based hydraulic model. The flood condition factors used in modeling include spacial factors and precipitation factors. The results showed that the BCNN model not only inherits the powerful ability of aggregating spacial information from CNNs to perform high level of accuracy and computational efficiency in predicting 2D urban flood inundation maps, but also offers a measure of uncertainty in the form of predictive variance, providing insights into the confidence and reliability of its predictions. The proposed BCNN method offered a new perspective for the analysis of surrogate model regarding real-time forecasting of flood inundation.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"24 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02814-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Urban flood risk management has been a hot issue worldwide due to the increased frequency and severity of floods occurring in cities. In this paper, an innovative modelling approach based on the Bayesian convolutional neural network (BCNN) was proposed to simulate the urban flood inundation, and to provide a reliable prediction of specific water depth. To develop the model, a series of historical rainfall data during the last 20 years were collected in Rushan China and the responding flood events were reproduced using physically based hydraulic model. The flood condition factors used in modeling include spacial factors and precipitation factors. The results showed that the BCNN model not only inherits the powerful ability of aggregating spacial information from CNNs to perform high level of accuracy and computational efficiency in predicting 2D urban flood inundation maps, but also offers a measure of uncertainty in the form of predictive variance, providing insights into the confidence and reliability of its predictions. The proposed BCNN method offered a new perspective for the analysis of surrogate model regarding real-time forecasting of flood inundation.
期刊介绍:
Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas:
- Spatiotemporal analysis and mapping of natural processes.
- Enviroinformatics.
- Environmental risk assessment, reliability analysis and decision making.
- Surface and subsurface hydrology and hydraulics.
- Multiphase porous media domains and contaminant transport modelling.
- Hazardous waste site characterization.
- Stochastic turbulence and random hydrodynamic fields.
- Chaotic and fractal systems.
- Random waves and seafloor morphology.
- Stochastic atmospheric and climate processes.
- Air pollution and quality assessment research.
- Modern geostatistics.
- Mechanisms of pollutant formation, emission, exposure and absorption.
- Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection.
- Bioinformatics.
- Probabilistic methods in ecology and population biology.
- Epidemiological investigations.
- Models using stochastic differential equations stochastic or partial differential equations.
- Hazardous waste site characterization.