Transience of continuous-time conservative random walks

IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY
Satyaki Bhattacharya, Stanislav Volkov
{"title":"Transience of continuous-time conservative random walks","authors":"Satyaki Bhattacharya, Stanislav Volkov","doi":"10.1017/jpr.2024.46","DOIUrl":null,"url":null,"abstract":"We consider two continuous-time generalizations of conservative random walks introduced in Englander and Volkov (2022), an orthogonal and a spherically symmetrical one; the latter model is also known as <jats:italic>random flights</jats:italic>. For both models, we show the transience of the walks when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000469_inline1.png\"/> <jats:tex-math> $d\\ge 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and that the rate of direction changing follows a power law <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000469_inline2.png\"/> <jats:tex-math> $t^{-\\alpha}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000469_inline3.png\"/> <jats:tex-math> $0&lt;\\alpha\\le 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, or the law <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000469_inline4.png\"/> <jats:tex-math> $(\\!\\ln t)^{-\\beta}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900224000469_inline5.png\"/> <jats:tex-math> $\\beta&gt;2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2024.46","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider two continuous-time generalizations of conservative random walks introduced in Englander and Volkov (2022), an orthogonal and a spherically symmetrical one; the latter model is also known as random flights. For both models, we show the transience of the walks when $d\ge 2$ and that the rate of direction changing follows a power law $t^{-\alpha}$ , $0<\alpha\le 1$ , or the law $(\!\ln t)^{-\beta}$ where $\beta>2$ .
连续时间保守随机游走的短暂性
我们考虑了英格兰德和沃尔科夫(2022)引入的保守随机漫步的两种连续时间广义模型,一种是正交模型,另一种是球对称模型;后一种模型也被称为随机飞行。对于这两种模型,我们都证明了当$d\ge 2$时随机游走的瞬时性,并且方向改变的速率遵循幂律$t^{-\alpha}$ ,$0<\alpha\le 1$,或律$(\!\ln t)^{-\beta}$ (其中$\beta>2$)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Probability
Journal of Applied Probability 数学-统计学与概率论
CiteScore
1.50
自引率
10.00%
发文量
92
审稿时长
6-12 weeks
期刊介绍: Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used. A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信