{"title":"Downside risk reduction using regime-switching signals: a statistical jump model approach","authors":"Yizhan Shu, Chenyu Yu, John M. Mulvey","doi":"10.1057/s41260-024-00376-x","DOIUrl":null,"url":null,"abstract":"<p>This article investigates a regime-switching investment strategy aimed at mitigating downside risk by reducing market exposure during anticipated unfavorable market regimes. We highlight the <i>statistical jump model</i> (JM) for market regime identification, a recently developed robust model that distinguishes itself from traditional Markov-switching models by enhancing regime persistence through a jump penalty applied at each state transition. Our JM utilizes a feature set comprising risk and return measures derived solely from the return series, with the optimal jump penalty selected through a time series cross-validation method that directly optimizes strategy performance. Our empirical analysis evaluates the realistic out-of-sample performance of various strategies on major equity indices from the US, Germany, and Japan from 1990 to 2023, in the presence of transaction costs and trading delays. The results demonstrate the consistent outperformance of the JM-guided strategy in reducing risk metrics such as volatility and maximum drawdown, and enhancing risk-adjusted returns like the Sharpe ratio, when compared to both hidden Markov model-guided strategy and the buy-and-hold strategy. These findings underline the enhanced persistence, practicality, and versatility of strategies utilizing JMs for regime-switching signals.</p>","PeriodicalId":45953,"journal":{"name":"Journal of Asset Management","volume":"14 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asset Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1057/s41260-024-00376-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
This article investigates a regime-switching investment strategy aimed at mitigating downside risk by reducing market exposure during anticipated unfavorable market regimes. We highlight the statistical jump model (JM) for market regime identification, a recently developed robust model that distinguishes itself from traditional Markov-switching models by enhancing regime persistence through a jump penalty applied at each state transition. Our JM utilizes a feature set comprising risk and return measures derived solely from the return series, with the optimal jump penalty selected through a time series cross-validation method that directly optimizes strategy performance. Our empirical analysis evaluates the realistic out-of-sample performance of various strategies on major equity indices from the US, Germany, and Japan from 1990 to 2023, in the presence of transaction costs and trading delays. The results demonstrate the consistent outperformance of the JM-guided strategy in reducing risk metrics such as volatility and maximum drawdown, and enhancing risk-adjusted returns like the Sharpe ratio, when compared to both hidden Markov model-guided strategy and the buy-and-hold strategy. These findings underline the enhanced persistence, practicality, and versatility of strategies utilizing JMs for regime-switching signals.
期刊介绍:
The Journal of Asset Management covers:new investment strategies, methodologies and techniquesnew products and trading developmentsimportant regulatory and legal developmentsemerging trends in asset managementUnder the guidance of its expert Editors and an eminent international Editorial Board, Journal of Asset Management has developed to provide an international forum for latest thinking, techniques and developments for the Fund Management Industry, from high-growth investment strategies to modelling and managing risk, from active management to index tracking. The Journal has established itself as a key bridge between applied academic research, commercial best practice and regulatory interests, globally.Each issue of Journal of Asset Management publishes detailed, authoritative briefings, analysis, research and reviews by leading experts in the field, to keep subscribers up to date with the latest developments and thinking in asset management.Journal of Asset Management covers:asset allocation hedge fund strategies risk definition and management index tracking performance measurement stock selection investment methodologies and techniques portfolio management and weighting product development and innovation active asset management style analysis strategies to match client profiles time horizons emerging markets alternative investments derivatives and hedging instruments pensions economics