Shield machine pose prediction based on CNN-GRU-Attention

IF 1.5 Q2 ENGINEERING, MULTIDISCIPLINARY
Xuanyu Liu and Kun Yang
{"title":"Shield machine pose prediction based on CNN-GRU-Attention","authors":"Xuanyu Liu and Kun Yang","doi":"10.1088/2631-8695/ad7781","DOIUrl":null,"url":null,"abstract":"This paper presents a shield machine pose prediction method based on Convolutional Neural Network (CNN) - Gated Recurrent Unit (GRU) with Attention mechanism (Attention). Firstly, the Pearson correlation coefficient is employed to select input parameters highly related to the position and posture of the shield machine. Then, a convolutional neural network is introduced to extract the long-term short-term feature dependency features in the operation data of the shield machine, optimizing the model’s input. The attention mechanism is integrated into the gated loop unit to make the model more targeted in using key information in the input sequence and improve the accuracy of the shield machine pose prediction model. The effectiveness of this method is verified by the example of Beijing Metro Line 10. Compared with GRU-Attention and LSTM-Attention models, the mean value of determination coefficient R2 increased from 0.872 and 0.886 to 0.959, and the mean value of root mean square error RMSE decreased from 2.78 and 2.52 to 2.14. This method can provide effective prediction for the attitude and position of shield machines in actual tunnel engineering.","PeriodicalId":11753,"journal":{"name":"Engineering Research Express","volume":"53 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Research Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-8695/ad7781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a shield machine pose prediction method based on Convolutional Neural Network (CNN) - Gated Recurrent Unit (GRU) with Attention mechanism (Attention). Firstly, the Pearson correlation coefficient is employed to select input parameters highly related to the position and posture of the shield machine. Then, a convolutional neural network is introduced to extract the long-term short-term feature dependency features in the operation data of the shield machine, optimizing the model’s input. The attention mechanism is integrated into the gated loop unit to make the model more targeted in using key information in the input sequence and improve the accuracy of the shield machine pose prediction model. The effectiveness of this method is verified by the example of Beijing Metro Line 10. Compared with GRU-Attention and LSTM-Attention models, the mean value of determination coefficient R2 increased from 0.872 and 0.886 to 0.959, and the mean value of root mean square error RMSE decreased from 2.78 and 2.52 to 2.14. This method can provide effective prediction for the attitude and position of shield machines in actual tunnel engineering.
基于 CNN-GRU-Attention 的盾构机姿态预测
本文提出了一种基于卷积神经网络(CNN)--门控递归单元(GRU)与注意力机制(Attention)的盾构机姿态预测方法。首先,利用皮尔逊相关系数选择与盾构机位置和姿态高度相关的输入参数。然后,引入卷积神经网络提取盾构机运行数据中的长期短期特征依赖特征,优化模型的输入。注意机制被集成到门控环单元中,使模型在使用输入序列中的关键信息时更具针对性,提高了盾构机姿态预测模型的准确性。以北京地铁 10 号线为例,验证了该方法的有效性。与 GRU-Attention 模型和 LSTM-Attention 模型相比,判定系数 R2 的均值从 0.872 和 0.886 提高到 0.959,均方根误差 RMSE 的均值从 2.78 和 2.52 下降到 2.14。该方法可在实际隧道工程中对盾构机的姿态和位置进行有效预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Research Express
Engineering Research Express Engineering-Engineering (all)
CiteScore
2.20
自引率
5.90%
发文量
192
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信