Soil characterization, CBR modeling, and spatial variability analysis for road subgrade: a case study of Danchuwa – Jajere Road, Yobe State, Nigeria

IF 1.5 Q2 ENGINEERING, MULTIDISCIPLINARY
Ibrahim Haruna Umar, Ibrahim Mu’azzam Salisu, Hang Lin and Jubril Izge Hassan
{"title":"Soil characterization, CBR modeling, and spatial variability analysis for road subgrade: a case study of Danchuwa – Jajere Road, Yobe State, Nigeria","authors":"Ibrahim Haruna Umar, Ibrahim Mu’azzam Salisu, Hang Lin and Jubril Izge Hassan","doi":"10.1088/2631-8695/ad78a5","DOIUrl":null,"url":null,"abstract":"Road construction projects require a thorough understanding of soil properties to ensure the stability and longevity of the infrastructure. This study investigates soil properties along a proposed 34 km road alignment in Yobe State, Nigeria, to characterize soil variability for road construction and develop a predictive model for California Bearing Ratio (CBR). Of the 34 soil samples analyzed, 30 were classified as A-3(1) and four as A-1(1) according to the AASHTO system. Geotechnical testing, including particle size distribution (grading percentages: gravel 0.02%–75.34%, sand 15.5%–90.88%, fines 8.92%–34.84%), Atterberg limits (liquid limits 17%–33%, plastic limits 14%–27%, plasticity index <12%), specific gravity (2.01 to 2.73), compaction (maximum dry density 1.83–2.19 Mg m−3, optimum moisture content 7.29%–14.42%), and CBR tests (values ranging from 5%–62%), were conducted. Correlation analyses revealed strong positive relationships between maximum dry density (r = 0.82) and specific gravity (r = 0.89) with CBR values. Cluster analysis segmented the samples into four distinct groups: Cluster 0 (11 samples), Cluster 1 (9 samples), Cluster 2 (5 samples), and Cluster 3 (9 samples). A linear regression model predicted CBR using maximum dry density and specific gravity (mean squared error = 9.82, R2 = 0.92). Based on CBR criteria, 8 out of 34 samples (CBR 20%–53%) satisfied subbase requirements, while none met the recommended minimum CBR of 80% for base course materials. This study enhances road construction planning through soil variability analysis, effective soil categorization via cluster analysis, and a reliable CBR prediction model. While on-site materials are unsuitable for subgrade and subbase layers, alternative materials or ground improvement techniques are recommended for the base course layer to enhance bearing capacity.","PeriodicalId":11753,"journal":{"name":"Engineering Research Express","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Research Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-8695/ad78a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Road construction projects require a thorough understanding of soil properties to ensure the stability and longevity of the infrastructure. This study investigates soil properties along a proposed 34 km road alignment in Yobe State, Nigeria, to characterize soil variability for road construction and develop a predictive model for California Bearing Ratio (CBR). Of the 34 soil samples analyzed, 30 were classified as A-3(1) and four as A-1(1) according to the AASHTO system. Geotechnical testing, including particle size distribution (grading percentages: gravel 0.02%–75.34%, sand 15.5%–90.88%, fines 8.92%–34.84%), Atterberg limits (liquid limits 17%–33%, plastic limits 14%–27%, plasticity index <12%), specific gravity (2.01 to 2.73), compaction (maximum dry density 1.83–2.19 Mg m−3, optimum moisture content 7.29%–14.42%), and CBR tests (values ranging from 5%–62%), were conducted. Correlation analyses revealed strong positive relationships between maximum dry density (r = 0.82) and specific gravity (r = 0.89) with CBR values. Cluster analysis segmented the samples into four distinct groups: Cluster 0 (11 samples), Cluster 1 (9 samples), Cluster 2 (5 samples), and Cluster 3 (9 samples). A linear regression model predicted CBR using maximum dry density and specific gravity (mean squared error = 9.82, R2 = 0.92). Based on CBR criteria, 8 out of 34 samples (CBR 20%–53%) satisfied subbase requirements, while none met the recommended minimum CBR of 80% for base course materials. This study enhances road construction planning through soil variability analysis, effective soil categorization via cluster analysis, and a reliable CBR prediction model. While on-site materials are unsuitable for subgrade and subbase layers, alternative materials or ground improvement techniques are recommended for the base course layer to enhance bearing capacity.
路基土壤特性、CBR 建模和空间变化分析:尼日利亚约贝州 Danchuwa - Jajere 公路案例研究
公路建设项目需要全面了解土壤特性,以确保基础设施的稳定性和使用寿命。本研究调查了尼日利亚约贝州一条 34 公里拟议公路线路沿线的土壤特性,以确定公路建设的土壤变化特征,并开发出加州承载比 (CBR) 预测模型。根据 AASHTO 系统,在分析的 34 个土壤样本中,30 个被归类为 A-3(1),4 个被归类为 A-1(1)。岩土测试包括粒度分布(级配百分比:砾石 0.02%-75.34%、砂 15.5%-90.88%、细粒 8.92%-34.84%)、阿特伯极限(液限 17%-33%、塑限 14%-27%、塑性指数 <12%)、比重(2.进行了压实(最大干密度 1.83-2.19 Mg m-3,最佳含水量 7.29%-14.42%)和 CBR 测试(数值范围为 5%-62%)。相关分析表明,最大干密度(r = 0.82)和比重(r = 0.89)与 CBR 值之间存在很强的正相关关系。聚类分析将样本分为四个不同的组:第 0 组(11 个样本)、第 1 组(9 个样本)、第 2 组(5 个样本)和第 3 组(9 个样本)。线性回归模型利用最大干密度和比重预测 CBR(均方误差 = 9.82,R2 = 0.92)。根据 CBR 标准,34 个样本中有 8 个样本(CBR 为 20%-53%)符合基层要求,但没有一个样本符合建议的基层材料最低 CBR 80%的标准。这项研究通过土壤变异性分析、聚类分析进行有效的土壤分类以及可靠的 CBR 预测模型,加强了道路建设规划。虽然现场材料不适合用于基层和底基层,但建议采用其他材料或地面改良技术用于基层,以提高承载能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Research Express
Engineering Research Express Engineering-Engineering (all)
CiteScore
2.20
自引率
5.90%
发文量
192
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信