Yoshiatsu Aomine, Yuto Shimo, Koki Sakurai, Mayuka Abe, Tom Macpherson, Takaaki Ozawa, Takatoshi Hikida
{"title":"Sex‐dependent differences in the ability of nicotine to modulate discrimination learning and cognitive flexibility in mice","authors":"Yoshiatsu Aomine, Yuto Shimo, Koki Sakurai, Mayuka Abe, Tom Macpherson, Takaaki Ozawa, Takatoshi Hikida","doi":"10.1111/jnc.16227","DOIUrl":null,"url":null,"abstract":"Nicotine, an addictive compound found in tobacco, functions as an agonist of nicotinic acetylcholine receptors (nAChRs) in the brain. Interestingly, nicotine has been reported to act as a cognitive enhancer in both human subjects and experimental animals. However, its effects in animal studies have not always been consistent, and sex differences have been identified in the effects of nicotine on several behaviors. Specifically, the role that sex plays in modulating the effects of nicotine on discrimination learning and cognitive flexibility in rodents is still unclear. Here, we evaluated sex‐dependent differences in the effect of daily nicotine intraperitoneal (i.p.) administration at various doses (0.125, 0.25, and 0.5 mg/kg) on visual discrimination (VD) learning and reversal (VDR) learning in mice. In male mice, 0.5 mg/kg nicotine significantly improved performance in the VDR, but not the VD, task, while 0.5 mg/kg nicotine significantly worsened performance in the VD, but not VDR task in female mice. Furthermore, 0.25 mg/kg nicotine significantly worsened performance in the VD and VDR task only in female mice. Next, to investigate the cellular mechanisms that underlie the sex difference in the effects of nicotine on cognition, transcriptomic analyses were performed focusing on the medial prefrontal cortex tissue samples from male and female mice that had received continuous administration of nicotine for 3 or 18 days. As a result of pathway enrichment analysis and protein–protein interaction analysis using gene sets of differentially expressed genes, decreased expression of postsynaptic‐related genes in males and increased expression of innate immunity‐related genes in females were identified as possible molecular mechanisms related to sex differences in the effects of nicotine on cognition in discrimination learning and cognitive flexibility. Our result suggests that nicotine modulates cognitive function in a sex‐dependent manner by alternating the expression of specific gene sets in the medial prefrontal cortex.<jats:boxed-text content-type=\"graphic\" position=\"anchor\"><jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mimetype=\"image/png\" position=\"anchor\" specific-use=\"enlarged-web-image\" xlink:href=\"graphic/jnc16227-fig-0008-m.png\"><jats:alt-text>image</jats:alt-text></jats:graphic></jats:boxed-text>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"141 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jnc.16227","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nicotine, an addictive compound found in tobacco, functions as an agonist of nicotinic acetylcholine receptors (nAChRs) in the brain. Interestingly, nicotine has been reported to act as a cognitive enhancer in both human subjects and experimental animals. However, its effects in animal studies have not always been consistent, and sex differences have been identified in the effects of nicotine on several behaviors. Specifically, the role that sex plays in modulating the effects of nicotine on discrimination learning and cognitive flexibility in rodents is still unclear. Here, we evaluated sex‐dependent differences in the effect of daily nicotine intraperitoneal (i.p.) administration at various doses (0.125, 0.25, and 0.5 mg/kg) on visual discrimination (VD) learning and reversal (VDR) learning in mice. In male mice, 0.5 mg/kg nicotine significantly improved performance in the VDR, but not the VD, task, while 0.5 mg/kg nicotine significantly worsened performance in the VD, but not VDR task in female mice. Furthermore, 0.25 mg/kg nicotine significantly worsened performance in the VD and VDR task only in female mice. Next, to investigate the cellular mechanisms that underlie the sex difference in the effects of nicotine on cognition, transcriptomic analyses were performed focusing on the medial prefrontal cortex tissue samples from male and female mice that had received continuous administration of nicotine for 3 or 18 days. As a result of pathway enrichment analysis and protein–protein interaction analysis using gene sets of differentially expressed genes, decreased expression of postsynaptic‐related genes in males and increased expression of innate immunity‐related genes in females were identified as possible molecular mechanisms related to sex differences in the effects of nicotine on cognition in discrimination learning and cognitive flexibility. Our result suggests that nicotine modulates cognitive function in a sex‐dependent manner by alternating the expression of specific gene sets in the medial prefrontal cortex.image
期刊介绍:
Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.