Solutions to the coupled Schrödinger systems with steep potential well and critical exponent
IF 2.1
2区 数学
Q1 MATHEMATICS
Zongyan Lv, Zhongwei Tang
求助PDF
{"title":"Solutions to the coupled Schrödinger systems with steep potential well and critical exponent","authors":"Zongyan Lv, Zhongwei Tang","doi":"10.1515/ans-2023-0149","DOIUrl":null,"url":null,"abstract":"In the present paper, we consider the coupled Schrödinger systems with critical exponent:<jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\" overflow=\"scroll\"> <m:mfenced close=\"\" open=\"{\"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign=\"left\"> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:mi>λ</m:mi> <m:msub> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>+</m:mo> <m:msub> <m:mrow> <m:mi>a</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mfenced> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:munderover accent=\"true\" accentunder=\"false\"> <m:mrow> <m:mo>∑</m:mo> </m:mrow> <m:mrow> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>d</m:mi> </m:mrow> </m:munderover> <m:msub> <m:mrow> <m:mi>β</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:msup> <m:mrow> <m:mfenced close=\"|\" open=\"|\"> <m:mrow> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>j</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mfenced> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msup> <m:mfenced close=\"|\" open=\"|\"> <m:mrow> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mfenced> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mtext> </m:mtext> <m:mtext> in </m:mtext> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width=\"1em\"/> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi>H</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"1em\"/> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1,2</m:mn> <m:mo>,</m:mo> <m:mo>…</m:mo> <m:mo>,</m:mo> <m:mi>d</m:mi> <m:mo>,</m:mo> <m:mspace width=\"1em\"/> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$$\\begin{cases}-{\\Delta}{u}_{i}+\\left(\\lambda {V}_{i}\\left(x\\right)+{a}_{i}\\right){u}_{i}=\\sum _{j=1}^{d}{\\beta }_{ij}{\\left\\vert {u}_{j}\\right\\vert }^{3}\\left\\vert {u}_{i}\\right\\vert {u}_{i}\\quad \\,\\text{in}\\,{\\mathbb{R}}^{3},\\quad \\hfill \\\\ {u}_{i}\\in {H}^{1}\\left({\\mathbb{R}}^{N}\\right),\\quad i=1,2,\\dots ,d,\\quad \\hfill \\end{cases}$$</jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_eq_999.png\"/> </jats:alternatives> </jats:disp-formula>where <jats:italic>d</jats:italic> ≥ 2, <jats:italic>β</jats:italic> <jats:sub> <jats:italic>ii</jats:italic> </jats:sub> > 0 for every <jats:italic>i</jats:italic>, <jats:italic>β</jats:italic> <jats:sub> <jats:italic>ij</jats:italic> </jats:sub> = <jats:italic>β</jats:italic> <jats:sub> <jats:italic>ji</jats:italic> </jats:sub> when <jats:italic>i</jats:italic> ≠ <jats:italic>j</jats:italic>, <jats:italic>λ</jats:italic> > 0 is a parameter and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mn>0</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mtext>loc </m:mtext> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:msubsup> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$0\\le {V}_{i}\\in {L}_{\\text{loc\\,}}^{\\infty }\\left({\\mathbb{R}}^{N}\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_001.png\"/> </jats:alternatives> </jats:inline-formula> have a common bottom int <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>${V}_{i}^{-1}\\left(0\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_002.png\"/> </jats:alternatives> </jats:inline-formula> composed of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msub> <m:mrow> <m:mi>ℓ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:msub> <m:mrow> <m:mi>ℓ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>${\\ell }_{0}\\left({\\ell }_{0}\\ge 1\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_003.png\"/> </jats:alternatives> </jats:inline-formula> connected components <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mfenced close=\"}\" open=\"{\"> <m:mrow> <m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mrow> <m:mi>k</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mfenced> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>ℓ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>${\\left\\{{{\\Omega}}_{k}\\right\\}}_{k=1}^{{\\ell }_{0}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_004.png\"/> </jats:alternatives> </jats:inline-formula>, where int <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>${V}_{i}^{-1}\\left(0\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_005.png\"/> </jats:alternatives> </jats:inline-formula> is the interior of the zero set <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mfenced close=\"}\" open=\"{\"> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo stretchy=\"false\">∣</m:mo> <m:msub> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>${V}_{i}^{-1}\\left(0\\right)=\\left\\{x\\in {\\mathbb{R}}^{N}\\mid {V}_{i}\\left(x\\right)=0\\right\\}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_006.png\"/> </jats:alternatives> </jats:inline-formula> of <jats:italic>V</jats:italic> <jats:sub> <jats:italic>i</jats:italic> </jats:sub>. We study the existence of least energy positive solutions to this system which are trapped near the zero sets int <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>${V}_{i}^{-1}\\left(0\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_007.png\"/> </jats:alternatives> </jats:inline-formula> for <jats:italic>λ</jats:italic> > 0 large for weakly cooperative case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:msub> <m:mrow> <m:mi>β</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo>></m:mo> <m:mn>0</m:mn> <m:mspace width=\"0.3333em\"/> <m:mi mathvariant=\"normal\">s</m:mi> <m:mi mathvariant=\"normal\">m</m:mi> <m:mi mathvariant=\"normal\">a</m:mi> <m:mi mathvariant=\"normal\">l</m:mi> <m:mi mathvariant=\"normal\">l</m:mi> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$\\left({\\beta }_{ij}{ >}0 \\mathrm{s}\\mathrm{m}\\mathrm{a}\\mathrm{l}\\mathrm{l}\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_008.png\"/> </jats:alternatives> </jats:inline-formula> and for purely competitive case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:msub> <m:mrow> <m:mi>β</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0</m:mn> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$\\left({\\beta }_{ij}\\le 0\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_009.png\"/> </jats:alternatives> </jats:inline-formula>. Besides, when <jats:italic>d</jats:italic> = 2, we construct a one-bump fully nontrivial solution which is localised at one prescribed components <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mfenced close=\"}\" open=\"{\"> <m:mrow> <m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mrow> <m:mi>k</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mfenced> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>ℓ</m:mi> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>${\\left\\{{{\\Omega}}_{k}\\right\\}}_{k=1}^{\\ell }$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_010.png\"/> </jats:alternatives> </jats:inline-formula> for large <jats:italic>λ</jats:italic>.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"18 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0149","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
In the present paper, we consider the coupled Schrödinger systems with critical exponent: − Δ u i + λ V i ( x ) + a i u i = ∑ j = 1 d β i j u j 3 u i u i in R 3 , u i ∈ H 1 ( R N ) , i = 1,2 , … , d , $$\begin{cases}-{\Delta}{u}_{i}+\left(\lambda {V}_{i}\left(x\right)+{a}_{i}\right){u}_{i}=\sum _{j=1}^{d}{\beta }_{ij}{\left\vert {u}_{j}\right\vert }^{3}\left\vert {u}_{i}\right\vert {u}_{i}\quad \,\text{in}\,{\mathbb{R}}^{3},\quad \hfill \\ {u}_{i}\in {H}^{1}\left({\mathbb{R}}^{N}\right),\quad i=1,2,\dots ,d,\quad \hfill \end{cases}$$ where d ≥ 2, β ii > 0 for every i , β ij = β ji when i ≠ j , λ > 0 is a parameter and 0 ≤ V i ∈ L loc ∞ R N $0\le {V}_{i}\in {L}_{\text{loc\,}}^{\infty }\left({\mathbb{R}}^{N}\right)$ have a common bottom int V i − 1 ( 0 ) ${V}_{i}^{-1}\left(0\right)$ composed of ℓ 0 ℓ 0 ≥ 1 ${\ell }_{0}\left({\ell }_{0}\ge 1\right)$ connected components Ω k k = 1 ℓ 0 ${\left\{{{\Omega}}_{k}\right\}}_{k=1}^{{\ell }_{0}}$ , where int V i − 1 ( 0 ) ${V}_{i}^{-1}\left(0\right)$ is the interior of the zero set V i − 1 ( 0 ) = x ∈ R N ∣ V i ( x ) = 0 ${V}_{i}^{-1}\left(0\right)=\left\{x\in {\mathbb{R}}^{N}\mid {V}_{i}\left(x\right)=0\right\}$ of V i . We study the existence of least energy positive solutions to this system which are trapped near the zero sets int V i − 1 ( 0 ) ${V}_{i}^{-1}\left(0\right)$ for λ > 0 large for weakly cooperative case β i j > 0 s m a l l $\left({\beta }_{ij}{ >}0 \mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l}\right)$ and for purely competitive case β i j ≤ 0 $\left({\beta }_{ij}\le 0\right)$ . Besides, when d = 2, we construct a one-bump fully nontrivial solution which is localised at one prescribed components Ω k k = 1 ℓ ${\left\{{{\Omega}}_{k}\right\}}_{k=1}^{\ell }$ for large λ .
具有陡峭势阱和临界指数的耦合薛定谔系统的解决方案
在本文中,我们考虑具有临界指数的耦合薛定谔系统: - Δ u i + λ V i ( x ) + a i u i = ∑ j = 1 d β i j u j 3 u i u i in R 3 , u i ∈ H 1 ( R N ) , i = 1,2 , ..., d , $$\begin{cases}-{\Delta}{u}_{i}+\left(\lambda {V}_{i}\left(x\right)+{a}_{i}\right){u}_{i}=\sum _{j=1}^{d}{\beta }_{ij}{\left\vert {u}_{j}\rightvert }^{3}\left\vert {u}_{i}\rightvert {u}_{i}\quad \、\text{in}\,{\mathbb{R}}^{3},\quad \hfill \ {u}_{i}\in {H}^{1}\left({\mathbb{R}}^{N}\right),\quad i=1,2,\dots ,d,\quad \hfill \end{cases}$$ 其中 d ≥ 2, β ii >;0 for every i, β ij = β ji when i ≠ j, λ >;0 是一个参数,且 0 ≤ V i ∈ L loc ∞ R N $0\le {V}_{i}\in {L}_{text\{loc\、}}^{infty }\left({\mathbb{R}}^{N}\right)$ 有一个共同的底部 int V i - 1 ( 0 ) ${V}_{i}^{-1}left(0\right)$ 由 ℓ 0 ≥ 1 ${ell }_{0}\left({\ell }_{0}\ge 1\right)$ 连接的组件 Ω k k = 1 ℓ 0 ${left\{{\Omega}}_{k}\right\}}_{k=1}^{\ell }_{0}}$ 组成、其中 int V i - 1 ( 0 ) ${V}_{i}^{-1}\left(0\right)$ 是零集 V i - 1 ( 0 ) = x∈ R N ∣ V i ( x ) = 0 ${V}_{i}^{-1}left(0\right)=left\{xin {\mathbb{R}}^{N}\mid {V}_{i}left(x\right)=0\right}$ of V i。我们研究了这个系统的最小能量正解的存在,这些正解被困在 λ > 0 大的弱合作情况 β i j > 的零集附近 int V i - 1 ( 0 ) ${V}_{i}^{-1}\left(0\right)$ ;0 s m a l l $\left({\beta }_{ij}{ >}0 \mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l}\right)$ 而对于纯竞争情况 β i j ≤ 0 $\left({\beta }_{ij}\le 0\right)$ 。此外,当 d = 2 时,我们构建了一个单凸块完全非难解,该解在一个规定分量 Ω k k = 1 ℓ $\{left\{{{\Omega}}_{k}\right}}_{k=1}^{\ell }$ 时为大λ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
来源期刊
期刊介绍:
Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.