Solutions to the coupled Schrödinger systems with steep potential well and critical exponent

IF 2.1 2区 数学 Q1 MATHEMATICS
Zongyan Lv, Zhongwei Tang
{"title":"Solutions to the coupled Schrödinger systems with steep potential well and critical exponent","authors":"Zongyan Lv, Zhongwei Tang","doi":"10.1515/ans-2023-0149","DOIUrl":null,"url":null,"abstract":"In the present paper, we consider the coupled Schrödinger systems with critical exponent:<jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\" overflow=\"scroll\"> <m:mfenced close=\"\" open=\"{\"> <m:mrow> <m:mtable> <m:mtr> <m:mtd columnalign=\"left\"> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:mi>λ</m:mi> <m:msub> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>+</m:mo> <m:msub> <m:mrow> <m:mi>a</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mfenced> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:munderover accent=\"true\" accentunder=\"false\"> <m:mrow> <m:mo>∑</m:mo> </m:mrow> <m:mrow> <m:mi>j</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>d</m:mi> </m:mrow> </m:munderover> <m:msub> <m:mrow> <m:mi>β</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:msup> <m:mrow> <m:mfenced close=\"|\" open=\"|\"> <m:mrow> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>j</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mfenced> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msup> <m:mfenced close=\"|\" open=\"|\"> <m:mrow> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mfenced> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mtext> </m:mtext> <m:mtext> in </m:mtext> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msup> <m:mo>,</m:mo> <m:mspace width=\"1em\"/> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi>H</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"1em\"/> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1,2</m:mn> <m:mo>,</m:mo> <m:mo>…</m:mo> <m:mo>,</m:mo> <m:mi>d</m:mi> <m:mo>,</m:mo> <m:mspace width=\"1em\"/> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$$\\begin{cases}-{\\Delta}{u}_{i}+\\left(\\lambda {V}_{i}\\left(x\\right)+{a}_{i}\\right){u}_{i}=\\sum _{j=1}^{d}{\\beta }_{ij}{\\left\\vert {u}_{j}\\right\\vert }^{3}\\left\\vert {u}_{i}\\right\\vert {u}_{i}\\quad \\,\\text{in}\\,{\\mathbb{R}}^{3},\\quad \\hfill \\\\ {u}_{i}\\in {H}^{1}\\left({\\mathbb{R}}^{N}\\right),\\quad i=1,2,\\dots ,d,\\quad \\hfill \\end{cases}$$</jats:tex-math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_eq_999.png\"/> </jats:alternatives> </jats:disp-formula>where <jats:italic>d</jats:italic> ≥ 2, <jats:italic>β</jats:italic> <jats:sub> <jats:italic>ii</jats:italic> </jats:sub> &gt; 0 for every <jats:italic>i</jats:italic>, <jats:italic>β</jats:italic> <jats:sub> <jats:italic>ij</jats:italic> </jats:sub> = <jats:italic>β</jats:italic> <jats:sub> <jats:italic>ji</jats:italic> </jats:sub> when <jats:italic>i</jats:italic> ≠ <jats:italic>j</jats:italic>, <jats:italic>λ</jats:italic> &gt; 0 is a parameter and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mn>0</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mtext>loc </m:mtext> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:msubsup> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$0\\le {V}_{i}\\in {L}_{\\text{loc\\,}}^{\\infty }\\left({\\mathbb{R}}^{N}\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_001.png\"/> </jats:alternatives> </jats:inline-formula> have a common bottom int <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>${V}_{i}^{-1}\\left(0\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_002.png\"/> </jats:alternatives> </jats:inline-formula> composed of <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msub> <m:mrow> <m:mi>ℓ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:msub> <m:mrow> <m:mi>ℓ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>${\\ell }_{0}\\left({\\ell }_{0}\\ge 1\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_003.png\"/> </jats:alternatives> </jats:inline-formula> connected components <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mfenced close=\"}\" open=\"{\"> <m:mrow> <m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mrow> <m:mi>k</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mfenced> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>ℓ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>${\\left\\{{{\\Omega}}_{k}\\right\\}}_{k=1}^{{\\ell }_{0}}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_004.png\"/> </jats:alternatives> </jats:inline-formula>, where int <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>${V}_{i}^{-1}\\left(0\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_005.png\"/> </jats:alternatives> </jats:inline-formula> is the interior of the zero set <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mfenced close=\"}\" open=\"{\"> <m:mrow> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo stretchy=\"false\">∣</m:mo> <m:msub> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>${V}_{i}^{-1}\\left(0\\right)=\\left\\{x\\in {\\mathbb{R}}^{N}\\mid {V}_{i}\\left(x\\right)=0\\right\\}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_006.png\"/> </jats:alternatives> </jats:inline-formula> of <jats:italic>V</jats:italic> <jats:sub> <jats:italic>i</jats:italic> </jats:sub>. We study the existence of least energy positive solutions to this system which are trapped near the zero sets int <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>${V}_{i}^{-1}\\left(0\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_007.png\"/> </jats:alternatives> </jats:inline-formula> for <jats:italic>λ</jats:italic> &gt; 0 large for weakly cooperative case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:msub> <m:mrow> <m:mi>β</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> <m:mspace width=\"0.3333em\"/> <m:mi mathvariant=\"normal\">s</m:mi> <m:mi mathvariant=\"normal\">m</m:mi> <m:mi mathvariant=\"normal\">a</m:mi> <m:mi mathvariant=\"normal\">l</m:mi> <m:mi mathvariant=\"normal\">l</m:mi> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$\\left({\\beta }_{ij}{ &gt;}0 \\mathrm{s}\\mathrm{m}\\mathrm{a}\\mathrm{l}\\mathrm{l}\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_008.png\"/> </jats:alternatives> </jats:inline-formula> and for purely competitive case <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mfenced close=\")\" open=\"(\"> <m:mrow> <m:msub> <m:mrow> <m:mi>β</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mi>j</m:mi> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>0</m:mn> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>$\\left({\\beta }_{ij}\\le 0\\right)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_009.png\"/> </jats:alternatives> </jats:inline-formula>. Besides, when <jats:italic>d</jats:italic> = 2, we construct a one-bump fully nontrivial solution which is localised at one prescribed components <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msubsup> <m:mrow> <m:mfenced close=\"}\" open=\"{\"> <m:mrow> <m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mrow> <m:mi>k</m:mi> </m:mrow> </m:msub> </m:mrow> </m:mfenced> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>ℓ</m:mi> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>${\\left\\{{{\\Omega}}_{k}\\right\\}}_{k=1}^{\\ell }$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_ans-2023-0149_ineq_010.png\"/> </jats:alternatives> </jats:inline-formula> for large <jats:italic>λ</jats:italic>.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":"18 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0149","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present paper, we consider the coupled Schrödinger systems with critical exponent: Δ u i + λ V i ( x ) + a i u i = j = 1 d β i j u j 3 u i u i in R 3 , u i H 1 ( R N ) , i = 1,2 , , d , $$\begin{cases}-{\Delta}{u}_{i}+\left(\lambda {V}_{i}\left(x\right)+{a}_{i}\right){u}_{i}=\sum _{j=1}^{d}{\beta }_{ij}{\left\vert {u}_{j}\right\vert }^{3}\left\vert {u}_{i}\right\vert {u}_{i}\quad \,\text{in}\,{\mathbb{R}}^{3},\quad \hfill \\ {u}_{i}\in {H}^{1}\left({\mathbb{R}}^{N}\right),\quad i=1,2,\dots ,d,\quad \hfill \end{cases}$$ where d ≥ 2, β ii > 0 for every i, β ij = β ji when ij, λ > 0 is a parameter and 0 V i L loc R N $0\le {V}_{i}\in {L}_{\text{loc\,}}^{\infty }\left({\mathbb{R}}^{N}\right)$ have a common bottom int V i 1 ( 0 ) ${V}_{i}^{-1}\left(0\right)$ composed of 0 0 1 ${\ell }_{0}\left({\ell }_{0}\ge 1\right)$ connected components Ω k k = 1 0 ${\left\{{{\Omega}}_{k}\right\}}_{k=1}^{{\ell }_{0}}$ , where int V i 1 ( 0 ) ${V}_{i}^{-1}\left(0\right)$ is the interior of the zero set V i 1 ( 0 ) = x R N V i ( x ) = 0 ${V}_{i}^{-1}\left(0\right)=\left\{x\in {\mathbb{R}}^{N}\mid {V}_{i}\left(x\right)=0\right\}$ of V i . We study the existence of least energy positive solutions to this system which are trapped near the zero sets int V i 1 ( 0 ) ${V}_{i}^{-1}\left(0\right)$ for λ > 0 large for weakly cooperative case β i j > 0 s m a l l $\left({\beta }_{ij}{ >}0 \mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l}\right)$ and for purely competitive case β i j 0 $\left({\beta }_{ij}\le 0\right)$ . Besides, when d = 2, we construct a one-bump fully nontrivial solution which is localised at one prescribed components Ω k k = 1 ${\left\{{{\Omega}}_{k}\right\}}_{k=1}^{\ell }$ for large λ.
具有陡峭势阱和临界指数的耦合薛定谔系统的解决方案
在本文中,我们考虑具有临界指数的耦合薛定谔系统: - Δ u i + λ V i ( x ) + a i u i = ∑ j = 1 d β i j u j 3 u i u i in R 3 , u i ∈ H 1 ( R N ) , i = 1,2 , ..., d , $$\begin{cases}-{\Delta}{u}_{i}+\left(\lambda {V}_{i}\left(x\right)+{a}_{i}\right){u}_{i}=\sum _{j=1}^{d}{\beta }_{ij}{\left\vert {u}_{j}\rightvert }^{3}\left\vert {u}_{i}\rightvert {u}_{i}\quad \、\text{in}\,{\mathbb{R}}^{3},\quad \hfill \ {u}_{i}\in {H}^{1}\left({\mathbb{R}}^{N}\right),\quad i=1,2,\dots ,d,\quad \hfill \end{cases}$$ 其中 d ≥ 2, β ii >;0 for every i, β ij = β ji when i ≠ j, λ >;0 是一个参数,且 0 ≤ V i ∈ L loc ∞ R N $0\le {V}_{i}\in {L}_{text\{loc\、}}^{infty }\left({\mathbb{R}}^{N}\right)$ 有一个共同的底部 int V i - 1 ( 0 ) ${V}_{i}^{-1}left(0\right)$ 由 ℓ 0 ≥ 1 ${ell }_{0}\left({\ell }_{0}\ge 1\right)$ 连接的组件 Ω k k = 1 ℓ 0 ${left\{{\Omega}}_{k}\right\}}_{k=1}^{\ell }_{0}}$ 组成、其中 int V i - 1 ( 0 ) ${V}_{i}^{-1}\left(0\right)$ 是零集 V i - 1 ( 0 ) = x∈ R N ∣ V i ( x ) = 0 ${V}_{i}^{-1}left(0\right)=left\{xin {\mathbb{R}}^{N}\mid {V}_{i}left(x\right)=0\right}$ of V i。我们研究了这个系统的最小能量正解的存在,这些正解被困在 λ > 0 大的弱合作情况 β i j > 的零集附近 int V i - 1 ( 0 ) ${V}_{i}^{-1}\left(0\right)$ ;0 s m a l l $\left({\beta }_{ij}{ >}0 \mathrm{s}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{l}\right)$ 而对于纯竞争情况 β i j ≤ 0 $\left({\beta }_{ij}\le 0\right)$ 。此外,当 d = 2 时,我们构建了一个单凸块完全非难解,该解在一个规定分量 Ω k k = 1 ℓ $\{left\{{{\Omega}}_{k}\right}}_{k=1}^{\ell }$ 时为大λ。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信