{"title":"Multifaceted roles of H2B mono-ubiquitylation in D-loop metabolism during homologous recombination repair","authors":"Shih-Hsun Hung, Yuan Liang, Wolf Dietrich Heyer","doi":"10.1101/2024.09.13.612919","DOIUrl":null,"url":null,"abstract":"Repairing DNA double-strand breaks is crucial for maintaining genome integrity, which occurs primarily through homologous recombination (HR) in S. cerevisiae. Nucleosomes, composed of DNA wrapped around a histone octamer, present a natural barrier to end-resection to initiate HR, but the impact on the downstream HR steps of homology search, DNA strand invasion and repair synthesis remain to be determined. Displacement loops (D-loops) play a pivotal role in HR, yet the influence of chromatin dynamics on D-loop metabolism remains unclear. Using the physical D-loop capture (DLC) and D-loop extension (DLE) assays to track HR intermediates, we employed genetic analysis to reveal that H2B mono-ubiquitylation (H2Bubi) affects multiple steps during HR repair. We infer that H2Bubi modulates chromatin structure, not only promoting histone degradation for nascent D-loop formation but also stabilizing extended D-loops through nucleosome assembly. Furthermore, H2Bubi regulates DNA resection via Rad9 recruitment to suppress a feedback control mechanism that dampens D-loop formation and extension at hyper-resected ends. Through physical and genetic assays to determine repair outcomes, we demonstrate that H2Bubi plays a crucial role in preventing break-induced replication and thus promoting genomic stability.","PeriodicalId":501246,"journal":{"name":"bioRxiv - Genetics","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.13.612919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Repairing DNA double-strand breaks is crucial for maintaining genome integrity, which occurs primarily through homologous recombination (HR) in S. cerevisiae. Nucleosomes, composed of DNA wrapped around a histone octamer, present a natural barrier to end-resection to initiate HR, but the impact on the downstream HR steps of homology search, DNA strand invasion and repair synthesis remain to be determined. Displacement loops (D-loops) play a pivotal role in HR, yet the influence of chromatin dynamics on D-loop metabolism remains unclear. Using the physical D-loop capture (DLC) and D-loop extension (DLE) assays to track HR intermediates, we employed genetic analysis to reveal that H2B mono-ubiquitylation (H2Bubi) affects multiple steps during HR repair. We infer that H2Bubi modulates chromatin structure, not only promoting histone degradation for nascent D-loop formation but also stabilizing extended D-loops through nucleosome assembly. Furthermore, H2Bubi regulates DNA resection via Rad9 recruitment to suppress a feedback control mechanism that dampens D-loop formation and extension at hyper-resected ends. Through physical and genetic assays to determine repair outcomes, we demonstrate that H2Bubi plays a crucial role in preventing break-induced replication and thus promoting genomic stability.