$$A_p$$ weights on nonhomogeneous trees equipped with measures of exponential growth

Alessandro Ottazzi, Federico Santagati, Maria Vallarino
{"title":"$$A_p$$ weights on nonhomogeneous trees equipped with measures of exponential growth","authors":"Alessandro Ottazzi, Federico Santagati, Maria Vallarino","doi":"10.1007/s13163-024-00501-9","DOIUrl":null,"url":null,"abstract":"<p>This paper aims to study <span>\\(A_p\\)</span> weights in the context of a class of metric measure spaces with exponential volume growth, namely infinite trees with root at infinity equipped with the geodesic distance and flow measures. Our main result is a Muckenhoupt Theorem, which is a characterization of the weights for which a suitable Hardy–Littlewood maximal operator is bounded on the corresponding weighted <span>\\(L^p\\)</span> spaces. We emphasise that this result does not require any geometric assumption on the tree or any condition on the flow measure. We also prove a reverse Hölder inequality in the case when the flow measure is locally doubling. We finally show that the logarithm of an <span>\\(A_p\\)</span> weight is in BMO and discuss the connection between <span>\\(A_p\\)</span> weights and quasisymmetric mappings.</p>","PeriodicalId":501429,"journal":{"name":"Revista Matemática Complutense","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matemática Complutense","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13163-024-00501-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to study \(A_p\) weights in the context of a class of metric measure spaces with exponential volume growth, namely infinite trees with root at infinity equipped with the geodesic distance and flow measures. Our main result is a Muckenhoupt Theorem, which is a characterization of the weights for which a suitable Hardy–Littlewood maximal operator is bounded on the corresponding weighted \(L^p\) spaces. We emphasise that this result does not require any geometric assumption on the tree or any condition on the flow measure. We also prove a reverse Hölder inequality in the case when the flow measure is locally doubling. We finally show that the logarithm of an \(A_p\) weight is in BMO and discuss the connection between \(A_p\) weights and quasisymmetric mappings.

配备指数增长措施的非均质树的 $$A_p$$ 权重
本文旨在研究一类具有指数体积增长的度量空间背景下的\(A_p\)权重,这一类度量空间是根在无穷远处的无限树,配备有大地距离和流度量。我们的主要结果是一个穆肯霍普特定理(Muckenhoupt Theorem),它描述了在相应的加权 \(L^p\) 空间上合适的哈代-利特尔伍德最大算子有界的权重。我们强调,这一结果不需要任何关于树的几何假设,也不需要任何关于流度量的条件。我们还证明了流动度量局部加倍情况下的反向赫尔德不等式。最后我们证明了 \(A_p\) 权重的对数在 BMO 中,并讨论了 \(A_p\) 权重和准对称映射之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信