Relative torsionfreeness and Frobenius extensions

Yanhong Bao, Jiafeng Lü, Zhibing Zhao
{"title":"Relative torsionfreeness and Frobenius extensions","authors":"Yanhong Bao, Jiafeng Lü, Zhibing Zhao","doi":"arxiv-2409.11892","DOIUrl":null,"url":null,"abstract":"Let $S/R$ be a Frobenius extension with $_RS_R$ centrally projective over\n$R$. We show that if $_R\\omega$ is a Wakamatsu tilting module then so is\n$_SS\\otimes_R\\omega$, and the natural ring homomorphism from the endomorphism\nring of $_R\\omega$ to the endomorphism ring of $_SS\\otimes_R\\omega$ is a\nFrobenius extension in addition that pd$(\\omega_T)$ is finite, where $T$ is the\nendomorphism ring of $_R\\omega$. We also obtain that the relative\n$n$-torsionfreeness of modules is preserved under Frobenius extensions.\nFurthermore, we give an application, which shows that the generalized\nG-dimension with respect to a Wakamatsu module is invariant under Frobenius\nextensions.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $S/R$ be a Frobenius extension with $_RS_R$ centrally projective over $R$. We show that if $_R\omega$ is a Wakamatsu tilting module then so is $_SS\otimes_R\omega$, and the natural ring homomorphism from the endomorphism ring of $_R\omega$ to the endomorphism ring of $_SS\otimes_R\omega$ is a Frobenius extension in addition that pd$(\omega_T)$ is finite, where $T$ is the endomorphism ring of $_R\omega$. We also obtain that the relative $n$-torsionfreeness of modules is preserved under Frobenius extensions. Furthermore, we give an application, which shows that the generalized G-dimension with respect to a Wakamatsu module is invariant under Frobenius extensions.
相对无扭和弗罗贝纽斯扩展
让 $S/R$ 是一个 Frobenius 扩展,其中 $_RS_R$ 在 $R$ 上具有中心投影性。我们证明,如果 $_R\omega$ 是一个若松倾斜模块,那么 $_SS\otimes_R\omega$ 也是一个若松倾斜模块,并且从 $_R\omega$ 的内同态环到 $_SS\otimes_R\omega$ 的内同态环的自然环同态是一个弗罗贝尼斯扩展,此外,pd$(\omega_T)$ 是有限的,其中 $T$ 是 $_R\omega$ 的内同态环。我们还得到,在弗罗贝纽斯扩展下,模块的相对$n$无扭性是保留的。此外,我们给出了一个应用,表明相对于若松模块的广义 G 维度在弗罗贝纽斯扩展下是不变的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信