New characterization of $(b,c)$-inverses through polarity

Btissam Laghmam, Hassane Zguitti
{"title":"New characterization of $(b,c)$-inverses through polarity","authors":"Btissam Laghmam, Hassane Zguitti","doi":"arxiv-2409.11987","DOIUrl":null,"url":null,"abstract":"In this paper we introduce the notion of $(b,c)$-polar elements in an\nassociative ring $R$. Necessary and sufficient conditions of an element $a\\in\nR$ to be $(b,c)$-polar are investigated. We show that an element $a\\in R$ is\n$(b,c)$-polar if and only if $a$ is $(b,c)$-invertible. In particular the\n$(b,c)$-polarity is a generalization of the polarity along an element\nintroduced by Song, Zhu and Mosi\\'c [14] if $b=c$, and the polarity introduced\nby Koliha and Patricio [10]. Further characterizations are obtained in the\nBanach space context.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we introduce the notion of $(b,c)$-polar elements in an associative ring $R$. Necessary and sufficient conditions of an element $a\in R$ to be $(b,c)$-polar are investigated. We show that an element $a\in R$ is $(b,c)$-polar if and only if $a$ is $(b,c)$-invertible. In particular the $(b,c)$-polarity is a generalization of the polarity along an element introduced by Song, Zhu and Mosi\'c [14] if $b=c$, and the polarity introduced by Koliha and Patricio [10]. Further characterizations are obtained in the Banach space context.
通过极性对 $(b,c)$反向的新表征
本文介绍了关联环 $R$ 中 $(b,c)$ 极性元素的概念。本文研究了元素 $a\inR$ 是 $(b,c)$ 极性元素的必要条件和充分条件。我们证明,当且仅当 $a$ 是 $(b,c)$可逆元素时,R$ 中的元素 $a\ 是 $(b,c)$极性元素。具体地说,$(b,c)$极性是 Song, Zhu 和 Mosi\'c [14] 在 $b=c$ 时引入的沿元素极性以及 Koliha 和 Patricio [10] 引入的极性的一般化。在巴纳赫空间背景下,我们得到了进一步的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信