Some remarks about $FP_{n}$-projectives modules

Viviana Gubitosi, Rafael Parra
{"title":"Some remarks about $FP_{n}$-projectives modules","authors":"Viviana Gubitosi, Rafael Parra","doi":"arxiv-2409.08334","DOIUrl":null,"url":null,"abstract":"Let $R$ be a ring. In \\cite{MD4} Mao and Ding defined an special class of\n$R$-modules that they called \\( FP_n \\)-projective $R$-modules. In this paper,\nwe give some new characterizations of \\( FP_n \\)-projective $R$-modules and\nstrong $n$-coherent rings. Some known results are extended and some new\ncharacterizations of the \\( FP_n \\)-injective global dimension in terms of \\(\nFP_n \\)-projective $R$-modules are obtained. Using the \\( FP_n \\)-projective\ndimension of an $R$-module defined by Ouyang, Duan and Li in \\cite{Ouy} we\nintroduce a slightly different \\( FP_n \\)-projective global dimension over the\nring $R$ which measures how far away the ring is from being Noetherian. This\ndimension agrees with the $(n,0)$-projective global dimension of \\cite{Ouy}\nwhen the ring in question is strong $n$-coherent.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $R$ be a ring. In \cite{MD4} Mao and Ding defined an special class of $R$-modules that they called \( FP_n \)-projective $R$-modules. In this paper, we give some new characterizations of \( FP_n \)-projective $R$-modules and strong $n$-coherent rings. Some known results are extended and some new characterizations of the \( FP_n \)-injective global dimension in terms of \( FP_n \)-projective $R$-modules are obtained. Using the \( FP_n \)-projective dimension of an $R$-module defined by Ouyang, Duan and Li in \cite{Ouy} we introduce a slightly different \( FP_n \)-projective global dimension over the ring $R$ which measures how far away the ring is from being Noetherian. This dimension agrees with the $(n,0)$-projective global dimension of \cite{Ouy} when the ring in question is strong $n$-coherent.
关于 $FP_{n}$ 投射模块的一些评论
让 $R$ 是一个环。在《{MD4}中中,Mao 和 Ding 定义了一类特殊的 $R$ 模块,他们称之为 \( FP_n \)-projective $R$ 模块。本文给出了 \( FP_n \)-投影$R$模块和强$n$相干环的一些新特征。本文扩展了一些已知结果,并得到了以( FP_n \ )投影 $R$ 模块为单位的( FP_n \ )投影全维的一些新特征。利用欧阳、段和李在 \cite{Ouy} 中定义的 $R$ 模块的(\( FP_n \)-投影维度,我们引入了一个稍有不同的环 $R$ 上的(\( FP_n \)-投影全局维度,它可以度量环离诺特环有多远。当相关的环是强 $n$ 相干的时候,这个维度与 \cite{Ouy} 的 $(n,0)$ 投射全局维度一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信