Differential envelopes of Novikov conformal algebras

P. S. Kolesnikov, A. A. Nesterenko
{"title":"Differential envelopes of Novikov conformal algebras","authors":"P. S. Kolesnikov, A. A. Nesterenko","doi":"arxiv-2409.10029","DOIUrl":null,"url":null,"abstract":"A Novikov conformal algebra is a conformal algebra such that its coefficient\nalgebra is right-symmetric and left commutative (i.e., it is an ``ordinary''\nNovikov algebra). We prove that every Novikov conformal algebra with a\nuniformly bounded locality function on a set of generators can be embedded into\na commutative conformal algebra with a derivation. In particular, every\nfinitely generated Novikov conformal algebra has a commutative conformal\ndifferential envelope. For infinitely generated algebras this statement is not\ntrue in general.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"196 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Novikov conformal algebra is a conformal algebra such that its coefficient algebra is right-symmetric and left commutative (i.e., it is an ``ordinary'' Novikov algebra). We prove that every Novikov conformal algebra with a uniformly bounded locality function on a set of generators can be embedded into a commutative conformal algebra with a derivation. In particular, every finitely generated Novikov conformal algebra has a commutative conformal differential envelope. For infinitely generated algebras this statement is not true in general.
诺维科夫共形代数的微分包络
诺维科夫共形代数是一种共形代数,它的系数代数是右对称和左交换的(即它是一个 "普通 "的诺维科夫代数)。我们证明,每一个在生成子集上具有均匀有界局部函数的诺维科夫共形代数,都可以嵌入到一个具有导数的交换共形代数中。特别是,每个无限生成的诺维科夫共形代数都有一个交换共形差分包络。对于无限生成的代数,这一说法一般不成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信