Higher-order interactions in random Lotka-Volterra communities

Laura Sidhom, Tobias Galla
{"title":"Higher-order interactions in random Lotka-Volterra communities","authors":"Laura Sidhom, Tobias Galla","doi":"arxiv-2409.10990","DOIUrl":null,"url":null,"abstract":"We use generating functionals to derive a dynamic mean-field description for\ngeneralised Lotka-Volterra systems with higher-order quenched random\ninteractions. We use the resulting single effective species process to\ndetermine the stability diagram in the space of parameters specifying the\nstatistics of interactions, and to calculate the properties of the surviving\ncommunity in the stable phase. We find that the behaviour as a function of the\nmodel parameters is often similar to the pairwise model. For example, the\npresence of more exploitative interactions increases stability. However we also\nfind differences. For instance, we confirm in more general settings an\nobservation made previously in model with third-order interactions that more\ncompetition between species can increase linear stability, and the diversity in\nthe community, an effect not seen in the pairwise model. The phase diagram of\nthe model with higher-order interactions is more complex than that of the model\nwith pairwise interactions. We identify a new mathematical condition for a\nsudden onset of diverging abundances.","PeriodicalId":501044,"journal":{"name":"arXiv - QuanBio - Populations and Evolution","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Populations and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We use generating functionals to derive a dynamic mean-field description for generalised Lotka-Volterra systems with higher-order quenched random interactions. We use the resulting single effective species process to determine the stability diagram in the space of parameters specifying the statistics of interactions, and to calculate the properties of the surviving community in the stable phase. We find that the behaviour as a function of the model parameters is often similar to the pairwise model. For example, the presence of more exploitative interactions increases stability. However we also find differences. For instance, we confirm in more general settings an observation made previously in model with third-order interactions that more competition between species can increase linear stability, and the diversity in the community, an effect not seen in the pairwise model. The phase diagram of the model with higher-order interactions is more complex than that of the model with pairwise interactions. We identify a new mathematical condition for a sudden onset of diverging abundances.
随机洛特卡-伏特拉群落中的高阶相互作用
我们利用生成函数推导出具有高阶淬火随机相互作用的广义洛特卡-伏特拉系统的动态均场描述。我们利用由此得出的单一有效物种过程来确定指定相互作用统计参数空间中的稳定图,并计算稳定阶段中幸存群落的特性。我们发现,作为模型参数函数的行为往往与成对模型相似。例如,存在更多的剥削性相互作用会增加稳定性。不过,我们也发现了不同之处。例如,我们在更一般的环境中证实了以前在三阶相互作用模型中的一个观察结果,即物种之间更多的竞争可以增加线性稳定性和群落的多样性,而这种效应在配对模型中是看不到的。高阶相互作用模型的相图比配对相互作用模型的相图更复杂。我们发现了一个新的数学条件,即丰度分化的突然发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信