Biological arrow of time: Emergence of tangled information hierarchies and self-modelling dynamics

Mikhail Prokopenko, Paul C. W. Davies, Michael Harré, Marcus Heisler, Zdenka Kuncic, Geraint F. Lewis, Ori Livson, Joseph T. Lizier, Fernando E. Rosas
{"title":"Biological arrow of time: Emergence of tangled information hierarchies and self-modelling dynamics","authors":"Mikhail Prokopenko, Paul C. W. Davies, Michael Harré, Marcus Heisler, Zdenka Kuncic, Geraint F. Lewis, Ori Livson, Joseph T. Lizier, Fernando E. Rosas","doi":"arxiv-2409.12029","DOIUrl":null,"url":null,"abstract":"We study open-ended evolution by focusing on computational and\ninformation-processing dynamics underlying major evolutionary transitions. In\ndoing so, we consider biological organisms as hierarchical dynamical systems\nthat generate regularities in their phase-spaces through interactions with\ntheir environment. These emergent information patterns can then be encoded\nwithin the organism's components, leading to self-modelling \"tangled\nhierarchies\". Our main conjecture is that when macro-scale patterns are encoded\nwithin micro-scale components, it creates fundamental tensions (computational\ninconsistencies) between what is encodable at a particular evolutionary stage\nand what is potentially realisable in the environment. A resolution of these\ntensions triggers an evolutionary transition which expands the problem-space,\nat the cost of generating new tensions in the expanded space, in a continual\nprocess. We argue that biological complexification can be interpreted\ncomputation-theoretically, within the G\\\"odel--Turing--Post recursion-theoretic\nframework, as open-ended generation of computational novelty. In general, this\nprocess can be viewed as a meta-simulation performed by higher-order systems\nthat successively simulate the computation carried out by lower-order systems.\nThis computation-theoretic argument provides a basis for hypothesising the\nbiological arrow of time.","PeriodicalId":501044,"journal":{"name":"arXiv - QuanBio - Populations and Evolution","volume":"190 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Populations and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study open-ended evolution by focusing on computational and information-processing dynamics underlying major evolutionary transitions. In doing so, we consider biological organisms as hierarchical dynamical systems that generate regularities in their phase-spaces through interactions with their environment. These emergent information patterns can then be encoded within the organism's components, leading to self-modelling "tangled hierarchies". Our main conjecture is that when macro-scale patterns are encoded within micro-scale components, it creates fundamental tensions (computational inconsistencies) between what is encodable at a particular evolutionary stage and what is potentially realisable in the environment. A resolution of these tensions triggers an evolutionary transition which expands the problem-space, at the cost of generating new tensions in the expanded space, in a continual process. We argue that biological complexification can be interpreted computation-theoretically, within the G\"odel--Turing--Post recursion-theoretic framework, as open-ended generation of computational novelty. In general, this process can be viewed as a meta-simulation performed by higher-order systems that successively simulate the computation carried out by lower-order systems. This computation-theoretic argument provides a basis for hypothesising the biological arrow of time.
生物时间之箭纠缠不清的信息层级和自我建模动态的出现
我们通过关注重大进化转变背后的计算和信息处理动力学来研究开放式进化。为此,我们将生物有机体视为分层动态系统,通过与环境的相互作用在其相空间中产生规律性。这些新出现的信息模式可以被编码到生物体的各个组成部分中,从而形成自我建模的 "纠结层次结构"。我们的主要猜想是,当宏观尺度的模式被编码到微观尺度的组件中时,就会在特定进化阶段可编码的内容与环境中可能实现的内容之间产生根本性的紧张关系(计算不一致性)。紧张关系的解决会引发进化过渡,进化过渡会扩大问题空间,而代价是在扩大的空间中产生新的紧张关系,这是一个持续的过程。我们认为,生物复杂化可以在 "模型-图灵-后递归 "理论框架内从计算理论上解释为计算新颖性的开放式生成。一般来说,这个过程可以被看作是由高阶系统进行的元模拟,而高阶系统又相继模拟了低阶系统进行的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信