Assessment of hyperacute cerebral ischemia using laser speckle contrast imaging.

IF 2.4 3区 医学 Q3 NEUROSCIENCES
Bochao Niu,Guan Sihai,Hongyan Gong,Peng Hu,Pushti Shah,Xiqin Liu,Yang Xia,Dezhong Yao,Benjamin Klugah-Brown,Bharat B Biswal
{"title":"Assessment of hyperacute cerebral ischemia using laser speckle contrast imaging.","authors":"Bochao Niu,Guan Sihai,Hongyan Gong,Peng Hu,Pushti Shah,Xiqin Liu,Yang Xia,Dezhong Yao,Benjamin Klugah-Brown,Bharat B Biswal","doi":"10.1089/brain.2024.0026","DOIUrl":null,"url":null,"abstract":"Accurate diagnosis of cerebral ischemia severity is crucial for clinical decision-making. Laser speckle contrast imaging based cerebral blood flow imaging can help assess the severity of cerebral ischemia by monitoring changes in blood flow. In this study, we simulated hyperacute ischemia in rats, isolating arterial and venous flow-related signals from cortical vasculature. Pearson correlation was used to examine the correlation between damaged vessels. Granger causality analysis was utilized to investigate causality correlation in ischemic vessels. Resting state analysis revealed a negative Pearson correlation between regional arteries and veins. Following cerebral ischemia induction, a positive artery-vein correlation emerged, which vanished after blood flow reperfusion. Granger causality analysis demonstrating enhanced causality coefficients for middle artery-vein pairs during occlusion, with a stronger left-right arterial effect than that of right-left, which persisted after reperfusion. These processing approaches amplify the understanding of cerebral ischemic images, promising potential future diagnostic advancements.","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2024.0026","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate diagnosis of cerebral ischemia severity is crucial for clinical decision-making. Laser speckle contrast imaging based cerebral blood flow imaging can help assess the severity of cerebral ischemia by monitoring changes in blood flow. In this study, we simulated hyperacute ischemia in rats, isolating arterial and venous flow-related signals from cortical vasculature. Pearson correlation was used to examine the correlation between damaged vessels. Granger causality analysis was utilized to investigate causality correlation in ischemic vessels. Resting state analysis revealed a negative Pearson correlation between regional arteries and veins. Following cerebral ischemia induction, a positive artery-vein correlation emerged, which vanished after blood flow reperfusion. Granger causality analysis demonstrating enhanced causality coefficients for middle artery-vein pairs during occlusion, with a stronger left-right arterial effect than that of right-left, which persisted after reperfusion. These processing approaches amplify the understanding of cerebral ischemic images, promising potential future diagnostic advancements.
利用激光斑点对比成像评估超急性脑缺血。
准确诊断脑缺血的严重程度对临床决策至关重要。基于激光斑点对比成像的脑血流成像可通过监测血流变化帮助评估脑缺血的严重程度。在这项研究中,我们模拟了大鼠的超急性缺血,从大脑皮层血管中分离出动脉和静脉血流相关信号。我们使用皮尔逊相关性来检验受损血管之间的相关性。格兰杰因果分析用于研究缺血血管的因果相关性。静息状态分析显示,区域动脉和静脉之间存在负的皮尔逊相关性。脑缺血诱导后,动脉与静脉之间出现了正相关,血流再灌注后这种相关性消失。格兰杰因果关系分析表明,在闭塞期间,中动脉-静脉对的因果关系系数增强,左-右动脉效应强于右-左动脉效应,这种效应在再灌注后持续存在。这些处理方法加深了对脑缺血图像的理解,有望在未来的诊断中取得进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain connectivity
Brain connectivity Neuroscience-General Neuroscience
CiteScore
4.80
自引率
0.00%
发文量
80
期刊介绍: Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic. This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信