Occlusion-Informed Radar Detection for Millimeter-Wave Indoor Sensing

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ahmed Murtada;Bhavani Shankar Mysore Rama Rao;Moein Ahmadi;Udo Schroeder
{"title":"Occlusion-Informed Radar Detection for Millimeter-Wave Indoor Sensing","authors":"Ahmed Murtada;Bhavani Shankar Mysore Rama Rao;Moein Ahmadi;Udo Schroeder","doi":"10.1109/OJSP.2024.3444709","DOIUrl":null,"url":null,"abstract":"The emergence of Multiple-Input Multiple-Output (MIMO) millimeter-wave (mmWave) radar sensors has prompted interest in indoor sensing applications, including human detection, vital signs monitoring, and real-time tracking in crowded environments. These sensors, equipped with multiple antenna elements, offer high angular resolution, often referred to as imaging radars for their capability to detect high-resolution point clouds. Employing radar systems with high-angular resolution in occlusion-prone scenarios often results in sparse signal returns in range profiles. In extreme cases, only one target return may be observed, as the resolution grid size becomes significantly smaller than the targets, causing portions of the targets to consistently occupy the full area of a test cell. Leveraging this structure, we propose two detectors to enhance the detection of non-occluded targets in such scenarios, thereby providing accurate high-resolution point clouds. The first method employs multiple hypothesis testing over each range profile where the range cells within are considered mutually occluding. The second is formulated based on binary hypothesis testing for each cell, considering the distribution of the signal in the other cells within the same range profile. Numerical analysis demonstrates the superior performance of the latter method over both the classic detection and the former method, especially in low Signal-to-Noise Ratio (SNR) scenarios. Our work showcases the potential of occlusion-informed detection in imaging radars to improve the detection probability of non-occluded targets and reduce false alarms in challenging indoor environments.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"976-990"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10637692","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10637692/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of Multiple-Input Multiple-Output (MIMO) millimeter-wave (mmWave) radar sensors has prompted interest in indoor sensing applications, including human detection, vital signs monitoring, and real-time tracking in crowded environments. These sensors, equipped with multiple antenna elements, offer high angular resolution, often referred to as imaging radars for their capability to detect high-resolution point clouds. Employing radar systems with high-angular resolution in occlusion-prone scenarios often results in sparse signal returns in range profiles. In extreme cases, only one target return may be observed, as the resolution grid size becomes significantly smaller than the targets, causing portions of the targets to consistently occupy the full area of a test cell. Leveraging this structure, we propose two detectors to enhance the detection of non-occluded targets in such scenarios, thereby providing accurate high-resolution point clouds. The first method employs multiple hypothesis testing over each range profile where the range cells within are considered mutually occluding. The second is formulated based on binary hypothesis testing for each cell, considering the distribution of the signal in the other cells within the same range profile. Numerical analysis demonstrates the superior performance of the latter method over both the classic detection and the former method, especially in low Signal-to-Noise Ratio (SNR) scenarios. Our work showcases the potential of occlusion-informed detection in imaging radars to improve the detection probability of non-occluded targets and reduce false alarms in challenging indoor environments.
毫米波室内传感的遮挡感应雷达探测
多输入多输出(MIMO)毫米波(mmWave)雷达传感器的出现引起了人们对室内传感应用的兴趣,包括在拥挤的环境中进行人体探测、生命体征监测和实时跟踪。这些传感器配备多个天线元件,具有很高的角度分辨率,通常被称为成像雷达,因为它们具有探测高分辨率点云的能力。在容易发生遮挡的情况下使用具有高角分辨率的雷达系统,往往会导致测距剖面中的信号回波稀疏。在极端情况下,由于分辨率网格尺寸明显小于目标,可能只能观测到一个目标回波,导致部分目标始终占据测试单元的整个区域。利用这种结构,我们提出了两种检测方法,以增强在这种情况下对非闭塞目标的检测,从而提供精确的高分辨率点云。第一种方法在每个范围剖面上采用多重假设检验,其中的范围单元被认为是相互遮挡的。第二种方法基于每个单元的二元假设检验,同时考虑同一范围剖面内其他单元的信号分布。数值分析表明,后一种方法的性能优于传统的检测方法和前一种方法,尤其是在低信噪比(SNR)的情况下。我们的工作展示了在成像雷达中进行闭塞信息检测的潜力,以提高对非闭塞目标的检测概率,并减少具有挑战性的室内环境中的误报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信