Cross-Attention Regression Flow for Defect Detection

Binhui Liu;Tianchu Guo;Bin Luo;Zhen Cui;Jian Yang
{"title":"Cross-Attention Regression Flow for Defect Detection","authors":"Binhui Liu;Tianchu Guo;Bin Luo;Zhen Cui;Jian Yang","doi":"10.1109/TIP.2024.3457236","DOIUrl":null,"url":null,"abstract":"Defect detection from images is a crucial and challenging topic of industry scenarios due to the scarcity and unpredictability of anomalous samples. However, existing defect detection methods exhibit low detection performance when it comes to small-size defects. In this work, we propose a Cross-Attention Regression Flow (CARF) framework to model a compact distribution of normal visual patterns for separating outliers. To retain rich scale information of defects, we build an interactive cross-attention pattern flow module to jointly transform and align distributions of multi-layer features, which is beneficial for detecting small-size defects that may be annihilated in high-level features. To handle the complexity of multi-layer feature distributions, we introduce a layer-conditional autoregression module to improve the fitting capacity of data likelihoods on multi-layer features. By transforming the multi-layer feature distributions into a latent space, we can better characterize normal visual patterns. Extensive experiments on four public datasets and our collected industrial dataset demonstrate that the proposed CARF outperforms state-of-the-art methods, particularly in detecting small-size defects.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"5183-5193"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10681003/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Defect detection from images is a crucial and challenging topic of industry scenarios due to the scarcity and unpredictability of anomalous samples. However, existing defect detection methods exhibit low detection performance when it comes to small-size defects. In this work, we propose a Cross-Attention Regression Flow (CARF) framework to model a compact distribution of normal visual patterns for separating outliers. To retain rich scale information of defects, we build an interactive cross-attention pattern flow module to jointly transform and align distributions of multi-layer features, which is beneficial for detecting small-size defects that may be annihilated in high-level features. To handle the complexity of multi-layer feature distributions, we introduce a layer-conditional autoregression module to improve the fitting capacity of data likelihoods on multi-layer features. By transforming the multi-layer feature distributions into a latent space, we can better characterize normal visual patterns. Extensive experiments on four public datasets and our collected industrial dataset demonstrate that the proposed CARF outperforms state-of-the-art methods, particularly in detecting small-size defects.
用于缺陷检测的交叉注意回归流程
由于异常样本的稀缺性和不可预测性,从图像中进行缺陷检测是工业场景中一个至关重要且极具挑战性的课题。然而,现有的缺陷检测方法在检测小尺寸缺陷时表现出较低的检测性能。在这项工作中,我们提出了一种交叉注意力回归流(CARF)框架,对正常视觉模式的紧凑分布进行建模,以分离异常值。为了保留缺陷的丰富尺度信息,我们建立了一个交互式交叉注意力模式流模块,对多层特征的分布进行联合变换和对齐,这有利于检测可能被高层特征湮没的小尺寸缺陷。为了处理多层特征分布的复杂性,我们引入了层条件自回归模块,以提高多层特征数据似然的拟合能力。通过将多层特征分布转化为潜在空间,我们可以更好地描述正常的视觉模式。在四个公共数据集和我们收集的工业数据集上进行的广泛实验表明,所提出的 CARF 优于最先进的方法,尤其是在检测小尺寸缺陷方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信