Control of Linear-Threshold Brain Networks via Reservoir Computing

Michael McCreesh;Jorge Cortés
{"title":"Control of Linear-Threshold Brain Networks via Reservoir Computing","authors":"Michael McCreesh;Jorge Cortés","doi":"10.1109/OJCSYS.2024.3451889","DOIUrl":null,"url":null,"abstract":"Learning is a key function in the brain to be able to achieve the activity patterns required to perform various activities. While specific behaviors are determined by activity in localized regions, the interconnections throughout the entire brain play a key role in enabling its ability to exhibit desired activity. To mimic this setup, this paper examines the use of reservoir computing to control a linear-threshold network brain model to a desired trajectory. We first formally design open- and closed-loop controllers that achieve reference tracking under suitable conditions on the synaptic connectivity. Given the impracticality of evaluating closed-form control signals, particularly with growing network complexity, we provide a framework where a reservoir of a larger size than the network is trained to drive the activity to the desired pattern. We illustrate the versatility of this setup in two applications: selective recruitment and inhibition of neuronal populations for goal-driven selective attention, and network intervention for the prevention of epileptic seizures.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"3 ","pages":"325-341"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10659224","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10659224/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Learning is a key function in the brain to be able to achieve the activity patterns required to perform various activities. While specific behaviors are determined by activity in localized regions, the interconnections throughout the entire brain play a key role in enabling its ability to exhibit desired activity. To mimic this setup, this paper examines the use of reservoir computing to control a linear-threshold network brain model to a desired trajectory. We first formally design open- and closed-loop controllers that achieve reference tracking under suitable conditions on the synaptic connectivity. Given the impracticality of evaluating closed-form control signals, particularly with growing network complexity, we provide a framework where a reservoir of a larger size than the network is trained to drive the activity to the desired pattern. We illustrate the versatility of this setup in two applications: selective recruitment and inhibition of neuronal populations for goal-driven selective attention, and network intervention for the prevention of epileptic seizures.
通过水库计算控制线性阈值大脑网络
学习是大脑实现各种活动所需的活动模式的关键功能。虽然特定行为是由局部区域的活动决定的,但整个大脑的相互连接在使大脑表现出所需活动的能力方面起着关键作用。为了模拟这种设置,本文研究了如何利用水库计算来控制线性阈值网络大脑模型,使其达到所需的轨迹。我们首先正式设计了开环和闭环控制器,可在突触连通性的适当条件下实现参考跟踪。鉴于评估闭式控制信号不切实际,特别是随着网络复杂性的增加,我们提供了一个框架,即训练一个比网络规模更大的蓄水池,以驱动活动达到所需的模式。我们在两个应用中说明了这种设置的多功能性:对神经元群进行选择性招募和抑制,以实现目标驱动的选择性注意;以及对网络进行干预,以预防癫痫发作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信