Fusobacterium nucleatum facilitates anti-PD-1 therapy in microsatellite stable colorectal cancer

IF 48.8 1区 医学 Q1 CELL BIOLOGY
Xueliang Wang, Yi Fang, Wei Liang, Chi Chun Wong, Huanlong Qin, Yaohui Gao, Meinong Liang, Lei Song, Yongxin Zhang, Miao Fan, Chuanfa Liu, Harry Cheuk-Hay Lau, Lixia Xu, Xiaoxing Li, Wu Song, Junlin Wang, Na Wang, Tao Yang, Mengmiao Mo, Xiang Zhang, Jun Yu
{"title":"Fusobacterium nucleatum facilitates anti-PD-1 therapy in microsatellite stable colorectal cancer","authors":"Xueliang Wang, Yi Fang, Wei Liang, Chi Chun Wong, Huanlong Qin, Yaohui Gao, Meinong Liang, Lei Song, Yongxin Zhang, Miao Fan, Chuanfa Liu, Harry Cheuk-Hay Lau, Lixia Xu, Xiaoxing Li, Wu Song, Junlin Wang, Na Wang, Tao Yang, Mengmiao Mo, Xiang Zhang, Jun Yu","doi":"10.1016/j.ccell.2024.08.019","DOIUrl":null,"url":null,"abstract":"<p>Microsatellite stable (MSS) colorectal cancers (CRCs) are often resistant to anti-programmed death-1 (PD-1) therapy. Here, we show that a CRC pathogen, <em>Fusobacterium nucleatum</em> (<em>Fn</em>), paradoxically sensitizes MSS CRC to anti-PD-1. Fecal microbiota transplantation (FMT) from patients with <em>Fn</em>-high MSS CRC to germ-free mice bearing MSS CRC confers sensitivity to anti-PD-1 compared to FMT from <em>Fn</em>-low counterparts. Single <em>Fn</em> administration also potentiates anti-PD-1 efficacy in murine allografts and CD34<sup>+</sup>-humanized mice bearing MSS CRC. Mechanistically, we demonstrate that intratumoral <em>Fn</em> generates abundant butyric acid, which inhibits histone deacetylase (HDAC) 3/8 in CD8<sup>+</sup> T cells, inducing <em>Tbx21</em> promoter H3K27 acetylation and expression. TBX21 transcriptionally represses PD-1, alleviating CD8<sup>+</sup> T cell exhaustion and promoting effector function. Supporting this notion, knockout of a butyric acid-producing gene in <em>Fn</em> abolishes its anti-PD-1 boosting effect. In patients with MSS CRC, high intratumoral <em>Fn</em> predicts favorable response to anti-PD-1 therapy, indicating <em>Fn</em> as a potential biomarker of immunotherapy response in MSS CRC.</p>","PeriodicalId":9670,"journal":{"name":"Cancer Cell","volume":"196 1","pages":""},"PeriodicalIF":48.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ccell.2024.08.019","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microsatellite stable (MSS) colorectal cancers (CRCs) are often resistant to anti-programmed death-1 (PD-1) therapy. Here, we show that a CRC pathogen, Fusobacterium nucleatum (Fn), paradoxically sensitizes MSS CRC to anti-PD-1. Fecal microbiota transplantation (FMT) from patients with Fn-high MSS CRC to germ-free mice bearing MSS CRC confers sensitivity to anti-PD-1 compared to FMT from Fn-low counterparts. Single Fn administration also potentiates anti-PD-1 efficacy in murine allografts and CD34+-humanized mice bearing MSS CRC. Mechanistically, we demonstrate that intratumoral Fn generates abundant butyric acid, which inhibits histone deacetylase (HDAC) 3/8 in CD8+ T cells, inducing Tbx21 promoter H3K27 acetylation and expression. TBX21 transcriptionally represses PD-1, alleviating CD8+ T cell exhaustion and promoting effector function. Supporting this notion, knockout of a butyric acid-producing gene in Fn abolishes its anti-PD-1 boosting effect. In patients with MSS CRC, high intratumoral Fn predicts favorable response to anti-PD-1 therapy, indicating Fn as a potential biomarker of immunotherapy response in MSS CRC.

Abstract Image

核葡萄球菌有助于微卫星稳定型结直肠癌的抗 PD-1 治疗
微卫星稳定(MSS)结直肠癌(CRC)通常对抗程序性死亡-1(PD-1)疗法具有抗药性。在这里,我们发现一种 CRC 病原体--核酸镰刀菌(Fn)--能使 MSS CRC 对抗 PD-1 产生敏感性。将 Fn 高的 MSS CRC 患者的粪便微生物群移植(FMT)给携带 MSS CRC 的无菌小鼠,与 Fn 低的患者的粪便微生物群移植相比,可使小鼠对抗 PD-1 敏感。单次给予 Fn 还能增强小鼠异体移植和携带 MSS CRC 的 CD34+ 人源化小鼠的抗 PD-1 疗效。从机理上讲,我们证明瘤内 Fn 会产生大量丁酸,抑制 CD8+ T 细胞中的组蛋白去乙酰化酶(HDAC)3/8,诱导 Tbx21 启动子 H3K27 乙酰化和表达。TBX21 可转录抑制 PD-1,缓解 CD8+ T 细胞衰竭并促进效应器功能。支持这一观点的是,敲除 Fn 中的丁酸产生基因会取消其抗 PD-1 的促进作用。在MSS CRC患者中,瘤内高Fn可预测抗PD-1疗法的良好反应,这表明Fn是MSS CRC免疫疗法反应的潜在生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cancer Cell
Cancer Cell 医学-肿瘤学
CiteScore
55.20
自引率
1.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: Cancer Cell is a journal that focuses on promoting major advances in cancer research and oncology. The primary criteria for considering manuscripts are as follows: Major advances: Manuscripts should provide significant advancements in answering important questions related to naturally occurring cancers. Translational research: The journal welcomes translational research, which involves the application of basic scientific findings to human health and clinical practice. Clinical investigations: Cancer Cell is interested in publishing clinical investigations that contribute to establishing new paradigms in the treatment, diagnosis, or prevention of cancers. Insights into cancer biology: The journal values clinical investigations that provide important insights into cancer biology beyond what has been revealed by preclinical studies. Mechanism-based proof-of-principle studies: Cancer Cell encourages the publication of mechanism-based proof-of-principle clinical studies, which demonstrate the feasibility of a specific therapeutic approach or diagnostic test.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信