Mohammad Bodiuzzaman, Kathiravan Murugesan, Peng Yuan, Bholanath Maity, Arunachalam Sagadevan, Naveen Malenahalli H, Song Wang, Partha Maity, Mohammed F. Alotaibi, De-en Jiang, Mutalifu Abulikemu, Omar F. Mohammed, Luigi Cavallo, Magnus Rueping, Osman M. Bakr
{"title":"Modulating Decarboxylative Oxidation Photocatalysis by Ligand Engineering of Atomically Precise Copper Nanoclusters","authors":"Mohammad Bodiuzzaman, Kathiravan Murugesan, Peng Yuan, Bholanath Maity, Arunachalam Sagadevan, Naveen Malenahalli H, Song Wang, Partha Maity, Mohammed F. Alotaibi, De-en Jiang, Mutalifu Abulikemu, Omar F. Mohammed, Luigi Cavallo, Magnus Rueping, Osman M. Bakr","doi":"10.1021/jacs.4c08688","DOIUrl":null,"url":null,"abstract":"Copper nanoclusters (Cu NCs) characterized by their well-defined electronic and optical properties are an ideal platform for organic photocatalysis and exploring atomic-level behaviors. However, their potential as greener, efficient catalysts for challenging reactions like decarboxylative oxygenation under mild conditions remains unexplored. Herein, we present Cu<sub>13</sub>(Nap)<sub>3</sub>(PPh<sub>3</sub>)<sub>7</sub>H<sub>10</sub> (hereafter Cu<sub>13</sub>Nap), protected by 1-naphthalene thiolate (Nap), which performs well in decarboxylative oxidation (90% yield) under photochemical conditions. In comparison, the isostructural Cu<sub>13</sub>(DCBT)<sub>3</sub>(PPh<sub>3</sub>)<sub>7</sub>H<sub>10</sub> (hereafter Cu<sub>13</sub>DCBT), stabilized by 2,4-dichlorobenzenethiolate (DCBT), yields only 28%, and other previously reported Cu NCs (Cu<sub>28</sub>, Cu<sub>29</sub>, Cu<sub>45</sub>, Cu<sub>57</sub>, and Cu<sub>61</sub>) yield in the range of 6–18%. The introduction of naphthalene thiolate to the surface of Cu<sub>13</sub> NCs influences their electronic structure and charge transfer in the ligand shell, enhancing visible light absorption and catalytic performance. Density functional theory (DFT) and experimental evidence suggest that the reaction proceeds primarily through an energy transfer mechanism. The energy transfer pathway is uncommon in the context of previous reports for decarboxylative oxidation reactions. Our findings suggest that strategically manipulating ligands holds significant potential for creating composite active sites on atomically precise copper NCs, resulting in enhanced catalytic efficacy and selectivity across various challenging reactions.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c08688","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Copper nanoclusters (Cu NCs) characterized by their well-defined electronic and optical properties are an ideal platform for organic photocatalysis and exploring atomic-level behaviors. However, their potential as greener, efficient catalysts for challenging reactions like decarboxylative oxygenation under mild conditions remains unexplored. Herein, we present Cu13(Nap)3(PPh3)7H10 (hereafter Cu13Nap), protected by 1-naphthalene thiolate (Nap), which performs well in decarboxylative oxidation (90% yield) under photochemical conditions. In comparison, the isostructural Cu13(DCBT)3(PPh3)7H10 (hereafter Cu13DCBT), stabilized by 2,4-dichlorobenzenethiolate (DCBT), yields only 28%, and other previously reported Cu NCs (Cu28, Cu29, Cu45, Cu57, and Cu61) yield in the range of 6–18%. The introduction of naphthalene thiolate to the surface of Cu13 NCs influences their electronic structure and charge transfer in the ligand shell, enhancing visible light absorption and catalytic performance. Density functional theory (DFT) and experimental evidence suggest that the reaction proceeds primarily through an energy transfer mechanism. The energy transfer pathway is uncommon in the context of previous reports for decarboxylative oxidation reactions. Our findings suggest that strategically manipulating ligands holds significant potential for creating composite active sites on atomically precise copper NCs, resulting in enhanced catalytic efficacy and selectivity across various challenging reactions.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.