Design, Manufacturing, and Testing of a Non-Preload Variable Friction Damper for Seismic Application of Buildings

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Wei Liu, Sihua Kong, Guifeng Zhao, Yuhong Ma, Zhenyu Yang, Qingsong Guan, Jiachuan Chen
{"title":"Design, Manufacturing, and Testing of a Non-Preload Variable Friction Damper for Seismic Application of Buildings","authors":"Wei Liu,&nbsp;Sihua Kong,&nbsp;Guifeng Zhao,&nbsp;Yuhong Ma,&nbsp;Zhenyu Yang,&nbsp;Qingsong Guan,&nbsp;Jiachuan Chen","doi":"10.1155/2024/9573096","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Friction dampers are widely used due to their simple structure, remarkable energy dissipation capacity, and frequency independence. However, existing friction dampers are prone to relaxing the preload force during long-term service, which can lead to cold bonding or cold solidification. To overcome this critical shortcoming, a novel non-preload variable friction damper (NVFD) was firstly proposed. The construction of the proposed NVFD is provided in detail. Furthermore, restoring the force model through the amplification factors of friction force and inertial mass was derived based on the principle of the proposed NVFD. Then, pseudo-static tests with various parameters were conducted. Finally, a single-degree-of-freedom (SDOF) structure was employed to compare the effectiveness of this paper’s new NVFD with a conventional friction damper (FD) under various earthquake levels. The results show that non-preload characteristics avoided the problems of large preloads by traditional friction dampers; thus, the NVFD had stable and reliable variable friction performance, which can effectively adapt to different hazard levels.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9573096","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/9573096","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Friction dampers are widely used due to their simple structure, remarkable energy dissipation capacity, and frequency independence. However, existing friction dampers are prone to relaxing the preload force during long-term service, which can lead to cold bonding or cold solidification. To overcome this critical shortcoming, a novel non-preload variable friction damper (NVFD) was firstly proposed. The construction of the proposed NVFD is provided in detail. Furthermore, restoring the force model through the amplification factors of friction force and inertial mass was derived based on the principle of the proposed NVFD. Then, pseudo-static tests with various parameters were conducted. Finally, a single-degree-of-freedom (SDOF) structure was employed to compare the effectiveness of this paper’s new NVFD with a conventional friction damper (FD) under various earthquake levels. The results show that non-preload characteristics avoided the problems of large preloads by traditional friction dampers; thus, the NVFD had stable and reliable variable friction performance, which can effectively adapt to different hazard levels.

Abstract Image

用于建筑物抗震应用的无预载可变摩擦阻尼器的设计、制造和测试
摩擦阻尼器因其结构简单、消能能力强和频率无关性而被广泛使用。然而,现有的摩擦阻尼器在长期使用过程中容易放松预紧力,从而导致冷粘结或冷凝固。为克服这一关键缺陷,首先提出了一种新型无预载可变摩擦阻尼器(NVFD)。本文详细介绍了所建议的 NVFD 的构造。此外,根据所提 NVFD 的原理,通过摩擦力和惯性质量的放大系数得出了恢复力模型。然后,进行了各种参数的伪静态试验。最后,采用单自由度(SDOF)结构比较了本文提出的新型 NVFD 与传统摩擦阻尼器(FD)在不同震级下的有效性。结果表明,无预载特性避免了传统摩擦阻尼器的大预载问题;因此,NVFD 具有稳定可靠的可变摩擦性能,能有效适应不同的灾害等级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信