{"title":"Flow field explorations and design improvements of a hybrid rocket motor LOx feed line","authors":"","doi":"10.1016/j.actaastro.2024.09.023","DOIUrl":null,"url":null,"abstract":"<div><p>The oxidizer system in a hybrid rocket motor needs to deliver the flow from a pressurized storage tank to multiple combustor ports. Pressure losses in the oxidizer system directly impacts combustor pressure and consequently the vehicle performance. However, oxidizer feed line designs till date have been done using simple 1D tools. Higher fidelity flow analysis methods have not been reported in the literature to identify loss generating features. Therefore, a design improvement study was carried out to identify and alleviate the impact of undesirable flow features in a typical oxidizer system design. An experimentally calibrated 3D RANS approach is applied to a typical LOx feed system which includes steps, splitters, ports, and pipes with multiple bends. These design features result in varying degrees of flow separation, secondary flows and vortical flow features and result in total pressure losses of up to 7 %. This loss means that the storage tank needs to be pressurized further to accommodate such losses and ensure combustor performance. A targeted design improvement approach that features simple, alternative, implementable solutions in the loss-generating regions is discussed. The best of these design improvements can reduce the total pressure loss to 4 %, indicating a 43 % reduction in the losses and reduced impact on storage tank design and combustor performance. Therefore, this paper demonstrates that a higher fidelity design enhancement process of the oxidizer feed system, which is often neglected in such detailed studies, can result in overall vehicle level design improvements to ensure mission targets are met effectively.</p></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0094576524005253/pdfft?md5=55ab848b133f3e6b330923ed9fee2255&pid=1-s2.0-S0094576524005253-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576524005253","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The oxidizer system in a hybrid rocket motor needs to deliver the flow from a pressurized storage tank to multiple combustor ports. Pressure losses in the oxidizer system directly impacts combustor pressure and consequently the vehicle performance. However, oxidizer feed line designs till date have been done using simple 1D tools. Higher fidelity flow analysis methods have not been reported in the literature to identify loss generating features. Therefore, a design improvement study was carried out to identify and alleviate the impact of undesirable flow features in a typical oxidizer system design. An experimentally calibrated 3D RANS approach is applied to a typical LOx feed system which includes steps, splitters, ports, and pipes with multiple bends. These design features result in varying degrees of flow separation, secondary flows and vortical flow features and result in total pressure losses of up to 7 %. This loss means that the storage tank needs to be pressurized further to accommodate such losses and ensure combustor performance. A targeted design improvement approach that features simple, alternative, implementable solutions in the loss-generating regions is discussed. The best of these design improvements can reduce the total pressure loss to 4 %, indicating a 43 % reduction in the losses and reduced impact on storage tank design and combustor performance. Therefore, this paper demonstrates that a higher fidelity design enhancement process of the oxidizer feed system, which is often neglected in such detailed studies, can result in overall vehicle level design improvements to ensure mission targets are met effectively.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.