Cornelius Brand , Viktoriia Korchemna , Kirill Simonov , Michael Skotnica
{"title":"Counting vanishing matrix-vector products","authors":"Cornelius Brand , Viktoriia Korchemna , Kirill Simonov , Michael Skotnica","doi":"10.1016/j.tcs.2024.114877","DOIUrl":null,"url":null,"abstract":"<div><p>Consider the following parameterized counting variation of the classic subset sum problem, which arises notably in the context of higher homotopy groups of topological spaces. Let <span><math><mi>v</mi><mo>∈</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> be a rational vector, <span><math><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>…</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo></math></span> a list of <span><math><mi>d</mi><mo>×</mo><mi>d</mi></math></span> rational matrices, <span><math><mi>S</mi><mo>∈</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>h</mi><mo>×</mo><mi>d</mi></mrow></msup></math></span> a rational matrix not necessarily square and <em>k</em> a parameter. The goal is to compute the number of ways one can choose <em>k</em> matrices <span><math><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub></math></span> from the list such that <span><math><mi>S</mi><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>⋯</mo><msub><mrow><mi>T</mi></mrow><mrow><msub><mrow><mi>i</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mi>v</mi><mo>=</mo><mn>0</mn><mo>∈</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>h</mi></mrow></msup></math></span>.</p><p>In this paper, we show that this problem is <span><math><mi>#</mi><mi>W</mi><mo>[</mo><mn>2</mn><mo>]</mo></math></span>-hard for parameter <em>k</em>. As a consequence, computing the <em>k</em>-th homotopy group of a <em>d</em>-dimensional 1-connected topological space for <span><math><mi>d</mi><mo>></mo><mn>3</mn></math></span> is <span><math><mi>#</mi><mi>W</mi><mo>[</mo><mn>2</mn><mo>]</mo></math></span>-hard for parameter <em>k</em>. We also discuss a decision version of the problem and its several modifications for which we show <span><math><mi>W</mi><mo>[</mo><mn>1</mn><mo>]</mo><mo>/</mo><mi>W</mi><mo>[</mo><mn>2</mn><mo>]</mo></math></span>-hardness. This is in contrast to the parameterized <em>k</em>-sum problem, which is only <span><math><mi>W</mi><mo>[</mo><mn>1</mn><mo>]</mo></math></span>-hard (Abboud-Lewi-Williams, ESA'14). In addition, we show that the decision version of the problem without parameter is an undecidable problem, and we give a fixed-parameter tractable algorithm for matrices of bounded size over finite fields, parameterized by the matrix dimensions and the order of the field.</p></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1021 ","pages":"Article 114877"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304397524004948/pdfft?md5=2c53a58210c875914cfbec0e130e8130&pid=1-s2.0-S0304397524004948-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524004948","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Consider the following parameterized counting variation of the classic subset sum problem, which arises notably in the context of higher homotopy groups of topological spaces. Let be a rational vector, a list of rational matrices, a rational matrix not necessarily square and k a parameter. The goal is to compute the number of ways one can choose k matrices from the list such that .
In this paper, we show that this problem is -hard for parameter k. As a consequence, computing the k-th homotopy group of a d-dimensional 1-connected topological space for is -hard for parameter k. We also discuss a decision version of the problem and its several modifications for which we show -hardness. This is in contrast to the parameterized k-sum problem, which is only -hard (Abboud-Lewi-Williams, ESA'14). In addition, we show that the decision version of the problem without parameter is an undecidable problem, and we give a fixed-parameter tractable algorithm for matrices of bounded size over finite fields, parameterized by the matrix dimensions and the order of the field.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.