SDD-Net: Soldering defect detection network for printed circuit boards

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"SDD-Net: Soldering defect detection network for printed circuit boards","authors":"","doi":"10.1016/j.neucom.2024.128575","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid detection of soldering defects in printed circuit boards (PCBs) is crucial and a challenge for quality control. Thus, a novel soldering defect detection network (SDD-Net) is proposed based on improvements in YOLOv7-tiny. A fast spatial pyramid pooling block integrating a cross-stage partial network is designed to expand the receptive field and feature extraction ability of the model. A hybrid combination attention mechanism is proposed to boost feature representation. A residual feature pyramid network is subsequently presented to reinforce the capability of multilevel feature fusion to overcome the scale variance issue in PCB soldering defects. Finally, efficient intersection over union loss is applied for bounding box regression to accelerate model convergence while improving localisation precision. SDD-Net achieves a stunning mean average precision of 99.1% on the dataset, producing a 1.8% increase compared with the baseline. The detection speed is boosted to 102 frames/s for input images of 640 × 640 pixels using a mediocre processor. In addition, SDD-Net exhibits outstanding generalisation ability in two public surface defect datasets.</p></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224013468","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid detection of soldering defects in printed circuit boards (PCBs) is crucial and a challenge for quality control. Thus, a novel soldering defect detection network (SDD-Net) is proposed based on improvements in YOLOv7-tiny. A fast spatial pyramid pooling block integrating a cross-stage partial network is designed to expand the receptive field and feature extraction ability of the model. A hybrid combination attention mechanism is proposed to boost feature representation. A residual feature pyramid network is subsequently presented to reinforce the capability of multilevel feature fusion to overcome the scale variance issue in PCB soldering defects. Finally, efficient intersection over union loss is applied for bounding box regression to accelerate model convergence while improving localisation precision. SDD-Net achieves a stunning mean average precision of 99.1% on the dataset, producing a 1.8% increase compared with the baseline. The detection speed is boosted to 102 frames/s for input images of 640 × 640 pixels using a mediocre processor. In addition, SDD-Net exhibits outstanding generalisation ability in two public surface defect datasets.

SDD-Net:印刷电路板焊接缺陷检测网络
快速检测印刷电路板(PCB)中的焊接缺陷是质量控制的关键和挑战。因此,在改进 YOLOv7-tiny 的基础上,提出了一种新型焊接缺陷检测网络(SDD-Net)。设计了一个集成了跨阶段部分网络的快速空间金字塔池块,以扩展模型的感受野和特征提取能力。此外,还提出了一种混合组合注意机制来增强特征表示。随后提出了一种残差特征金字塔网络,以加强多级特征融合的能力,克服印刷电路板焊接缺陷中的尺度差异问题。最后,在边界框回归中应用了高效的交集大于联合损失,以加速模型收敛,同时提高定位精度。在数据集上,SDD-Net 的平均精度达到了惊人的 99.1%,与基线相比提高了 1.8%。在使用普通处理器处理 640 × 640 像素的输入图像时,检测速度提高到 102 帧/秒。此外,SDD-Net 还在两个公共表面缺陷数据集上表现出了出色的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信