Quasi-linear superelasticity and associated elastocaloric effect in boron-doped polycrystalline Ni-Mn-Ti alloys

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Quasi-linear superelasticity and associated elastocaloric effect in boron-doped polycrystalline Ni-Mn-Ti alloys","authors":"","doi":"10.1016/j.actamat.2024.120411","DOIUrl":null,"url":null,"abstract":"<div><p>Ni-Mn-Ti shape memory alloys show great potential in solid-state elastocaloric cooling owing to very prominent elastocaloric effect along with first-order stress-induced martensitic transformation. However, large stress hysteresis inherent to martensitic transformation greatly restricts the energy efficiency and cyclic stability of elastocaloric response. Here, we demonstrate the effective manipulation of stress hysteresis as well as the resulting elastocaloric effect through doping boron to Ni-Mn-Ti alloys. With the incremental boron content in (Ni<sub>50</sub>Mn<sub>31</sub>Ti<sub>19</sub>)<sub>100–</sub><em><sub>x</sub></em>B<em><sub>x</sub></em> (<em>x</em> = 0, 0.2, 0.5, 1, 1.5) alloys, a plateau-type superelastic behavior with large stress hysteresis gradually evolves into a quasi-linear one with slim hysteresis, giving rise to significant improvement in the energy conversion efficiency of elastocaloric response. In a (Ni<sub>50</sub>Mn<sub>31</sub>Ti<sub>19</sub>)<sub>99</sub>B<sub>1</sub> alloy, the coefficient of performance of material (<em>COP<sub>mat</sub></em>) can be as high as 24 ∼ 33. Moreover, under a compressive strain of 4%, large cooling |Δ<em>T<sub>ad</sub></em>| values higher than 6.5 K in the (Ni<sub>50</sub>Mn<sub>31</sub>Ti<sub>19</sub>)<sub>99</sub>B<sub>1</sub> alloy are maintained for over 8000 superelastic cycles, showing an enhancement of one order of magnitude in the cyclability with respect to that of boron-free Ni<sub>50</sub>Mn<sub>31</sub>Ti<sub>19</sub> alloy. We attribute the enhanced elasocaloric response to the significantly improved mechanical properties but reduced stress hysteresis endowed by relatively high content of boron doping.</p></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424007614","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ni-Mn-Ti shape memory alloys show great potential in solid-state elastocaloric cooling owing to very prominent elastocaloric effect along with first-order stress-induced martensitic transformation. However, large stress hysteresis inherent to martensitic transformation greatly restricts the energy efficiency and cyclic stability of elastocaloric response. Here, we demonstrate the effective manipulation of stress hysteresis as well as the resulting elastocaloric effect through doping boron to Ni-Mn-Ti alloys. With the incremental boron content in (Ni50Mn31Ti19)100–xBx (x = 0, 0.2, 0.5, 1, 1.5) alloys, a plateau-type superelastic behavior with large stress hysteresis gradually evolves into a quasi-linear one with slim hysteresis, giving rise to significant improvement in the energy conversion efficiency of elastocaloric response. In a (Ni50Mn31Ti19)99B1 alloy, the coefficient of performance of material (COPmat) can be as high as 24 ∼ 33. Moreover, under a compressive strain of 4%, large cooling |ΔTad| values higher than 6.5 K in the (Ni50Mn31Ti19)99B1 alloy are maintained for over 8000 superelastic cycles, showing an enhancement of one order of magnitude in the cyclability with respect to that of boron-free Ni50Mn31Ti19 alloy. We attribute the enhanced elasocaloric response to the significantly improved mechanical properties but reduced stress hysteresis endowed by relatively high content of boron doping.

镍-锰-钛形状记忆合金具有非常突出的弹性热效应和一阶应力诱导的马氏体转变,因此在固态弹性冷却方面显示出巨大的潜力。然而,马氏体转变固有的大应力滞后极大地限制了弹性响应的能量效率和周期稳定性。在这里,我们展示了如何通过在镍锰钛合金中掺入硼来有效控制应力滞后以及由此产生的弹性效应。随着(Ni50Mn31Ti19)100-xBx(x = 0、0.2、0.5、1、1.5)合金中硼含量的增加,应力滞后较大的高原型超弹性行为逐渐演变为滞后较小的准线性行为,从而显著提高了弹性响应的能量转换效率。在(Ni50Mn31Ti19)99B1 合金中,材料性能系数(COPmat)可高达 24 ∼ 33。此外,在 4% 的压缩应变下,(Ni50Mn31Ti19)99B1 合金中高于 6.5 K 的大冷却|ΔTad|值可维持 8000 次以上的超弹性循环,与无硼的 Ni50Mn31Ti19 合金相比,循环性提高了一个数量级。我们将这种增强的弹塑性响应归因于相对较高的硼掺杂含量所带来的机械性能的显著改善和应力滞后的减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信