{"title":"Group-feature (Sensor) selection with controlled redundancy using neural networks","authors":"","doi":"10.1016/j.neucom.2024.128596","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we present a novel embedded feature selection method based on a Multi-layer Perceptron (MLP) network and generalize it for group-feature or sensor selection problems, which can control the level of redundancy among the selected features or groups and it is computationally more efficient than the existing ones in the literature. Additionally, we have generalized the group lasso penalty for feature selection to encompass a mechanism for selecting valuable groups of features while simultaneously maintaining control over redundancy. We establish the monotonicity and convergence of the proposed algorithm, with a smoothed version of the penalty terms, under suitable assumptions. The effectiveness of the proposed method for both feature selection and group feature selection is validated through experimental results on various benchmark datasets. The performance of the proposed methods is compared with some state-of-the-art methods.</p></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224013675","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we present a novel embedded feature selection method based on a Multi-layer Perceptron (MLP) network and generalize it for group-feature or sensor selection problems, which can control the level of redundancy among the selected features or groups and it is computationally more efficient than the existing ones in the literature. Additionally, we have generalized the group lasso penalty for feature selection to encompass a mechanism for selecting valuable groups of features while simultaneously maintaining control over redundancy. We establish the monotonicity and convergence of the proposed algorithm, with a smoothed version of the penalty terms, under suitable assumptions. The effectiveness of the proposed method for both feature selection and group feature selection is validated through experimental results on various benchmark datasets. The performance of the proposed methods is compared with some state-of-the-art methods.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.