Valorization of waste feather fiber: One uranium resource recycling material

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Xuchai Shan , Xinyu Shi , Xiaohong Tan , Yadong Pu , Taotao Qiang
{"title":"Valorization of waste feather fiber: One uranium resource recycling material","authors":"Xuchai Shan ,&nbsp;Xinyu Shi ,&nbsp;Xiaohong Tan ,&nbsp;Yadong Pu ,&nbsp;Taotao Qiang","doi":"10.1016/j.nucengdes.2024.113596","DOIUrl":null,"url":null,"abstract":"<div><p>With the increase in petrochemical energy consumption and the limited reserves, the abundant and cheap sustainable biomass resources have been more space for development. Abandoned feather fiber (FF) is the main by-product of the poultry industry. It not only depletes resources unnecessarily, but also causes environmental damage. Uranium adsorption material made from waste feather fiber is a high value-added conversion of waste resources. In this study, phosphate ester group was used to modify the waste feather fiber to prepare an adsorption material (FF-EDGE-PT) with high affinity for uranium. FF-EDGE-PT had an absorption capacity (AC) of 268.45 ± 14.84 mg/g for uranium in a solution containing a uranium concentration of 8 ppm. The Langmuir isotherm model fitting reveals that FF-EDGE-PT has a maximum saturated AC of 877.19 mg/g. More importantly, FF-EDGE-PT also exhibits excellent recycling performance and selective adsorption, indicating that FF-EDGE-PT is a potential uranium adsorption material.</p></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"429 ","pages":"Article 113596"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324006964","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With the increase in petrochemical energy consumption and the limited reserves, the abundant and cheap sustainable biomass resources have been more space for development. Abandoned feather fiber (FF) is the main by-product of the poultry industry. It not only depletes resources unnecessarily, but also causes environmental damage. Uranium adsorption material made from waste feather fiber is a high value-added conversion of waste resources. In this study, phosphate ester group was used to modify the waste feather fiber to prepare an adsorption material (FF-EDGE-PT) with high affinity for uranium. FF-EDGE-PT had an absorption capacity (AC) of 268.45 ± 14.84 mg/g for uranium in a solution containing a uranium concentration of 8 ppm. The Langmuir isotherm model fitting reveals that FF-EDGE-PT has a maximum saturated AC of 877.19 mg/g. More importantly, FF-EDGE-PT also exhibits excellent recycling performance and selective adsorption, indicating that FF-EDGE-PT is a potential uranium adsorption material.

废弃羽毛纤维的价值评估:一种铀资源回收材料
随着石化能源消耗的增加和储量的有限,丰富而廉价的可持续生物质资源有了更大的发展空间。废弃羽毛纤维(FF)是家禽业的主要副产品。它不仅会无谓地消耗资源,还会对环境造成破坏。利用废弃羽毛纤维制成的铀吸附材料是一种高附加值的废弃资源转化物。本研究利用磷酸酯基团对废羽毛纤维进行改性,制备出一种对铀具有高亲和力的吸附材料(FF-EDGE-PT)。在铀浓度为 8 ppm 的溶液中,FF-EDGE-PT 对铀的吸收能力(AC)为 268.45 ± 14.84 mg/g。朗缪尔等温线模型拟合显示,FF-EDGE-PT 的最大饱和 AC 值为 877.19 毫克/克。更重要的是,FF-EDGE-PT 还表现出优异的回收性能和选择性吸附能力,表明 FF-EDGE-PT 是一种潜在的铀吸附材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Engineering and Design
Nuclear Engineering and Design 工程技术-核科学技术
CiteScore
3.40
自引率
11.80%
发文量
377
审稿时长
5 months
期刊介绍: Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology. Fundamentals of Reactor Design include: • Thermal-Hydraulics and Core Physics • Safety Analysis, Risk Assessment (PSA) • Structural and Mechanical Engineering • Materials Science • Fuel Behavior and Design • Structural Plant Design • Engineering of Reactor Components • Experiments Aspects beyond fundamentals of Reactor Design covered: • Accident Mitigation Measures • Reactor Control Systems • Licensing Issues • Safeguard Engineering • Economy of Plants • Reprocessing / Waste Disposal • Applications of Nuclear Energy • Maintenance • Decommissioning Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信