Experimental study on bond-slip behaviors of CFRP sheet-Q690 high strength steel plate considering the effect of CFRP sheet thickness and bonding length
{"title":"Experimental study on bond-slip behaviors of CFRP sheet-Q690 high strength steel plate considering the effect of CFRP sheet thickness and bonding length","authors":"","doi":"10.1016/j.istruc.2024.107293","DOIUrl":null,"url":null,"abstract":"<div><p>With the increasing application of carbon fiber reinforced polymer (CFRP) in steel structure engineering, the bond-slip behavior between the two has attracted much attention. Firstly, 18 sets of CFRP sheet-Q690qD high-strength steel double strap shear specimens were fabricated considering the effects of CFRP sheet thicknesses and bond length. Then, static and fatigue tests were conducted on them. Subsequently, based on the 3D-DIC acquisition technology, the bond-slip curves were obtained using the smoothing method and the fitting method respectively Finally, the three key parameters of <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>max</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>and <span><math><msub><mrow><mi>s</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> in the bifurcated model at each working condition were obtained. The experimental results indicated that the bond length was positively correlated with the static load ultimate strength, while the thickness of the CFRP sheet had less effect on the ultimate strength. The fatigue life of the specimen with a bond length of 40 mm under equal stress ratio fatigue loading was much higher than that of the specimens with bond lengths of 60 mm and 80 mm. It was found that the fitting method had better stability and accuracy in fitting the bond-slip curves of CFRP sheet-Q690qD high-strength steel specimens. The accuracy of the fitting maximum bond load was above 80 %, which can provide a relevant basis for the subsequent numerical simulation calculation.</p></div>","PeriodicalId":48642,"journal":{"name":"Structures","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352012424014450","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing application of carbon fiber reinforced polymer (CFRP) in steel structure engineering, the bond-slip behavior between the two has attracted much attention. Firstly, 18 sets of CFRP sheet-Q690qD high-strength steel double strap shear specimens were fabricated considering the effects of CFRP sheet thicknesses and bond length. Then, static and fatigue tests were conducted on them. Subsequently, based on the 3D-DIC acquisition technology, the bond-slip curves were obtained using the smoothing method and the fitting method respectively Finally, the three key parameters of , and in the bifurcated model at each working condition were obtained. The experimental results indicated that the bond length was positively correlated with the static load ultimate strength, while the thickness of the CFRP sheet had less effect on the ultimate strength. The fatigue life of the specimen with a bond length of 40 mm under equal stress ratio fatigue loading was much higher than that of the specimens with bond lengths of 60 mm and 80 mm. It was found that the fitting method had better stability and accuracy in fitting the bond-slip curves of CFRP sheet-Q690qD high-strength steel specimens. The accuracy of the fitting maximum bond load was above 80 %, which can provide a relevant basis for the subsequent numerical simulation calculation.
期刊介绍:
Structures aims to publish internationally-leading research across the full breadth of structural engineering. Papers for Structures are particularly welcome in which high-quality research will benefit from wide readership of academics and practitioners such that not only high citation rates but also tangible industrial-related pathways to impact are achieved.