Approximation schemes for Min-Sum k-Clustering

Pub Date : 2024-09-17 DOI:10.1016/j.disopt.2024.100860
Ismail Naderi, Mohsen Rezapour, Mohammad R. Salavatipour
{"title":"Approximation schemes for Min-Sum k-Clustering","authors":"Ismail Naderi,&nbsp;Mohsen Rezapour,&nbsp;Mohammad R. Salavatipour","doi":"10.1016/j.disopt.2024.100860","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the Min-Sum <span><math><mi>k</mi></math></span>-Clustering (<span><math><mi>k</mi></math></span>-MSC) problem. Given a set of points in a metric which is represented by an edge-weighted graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> and a parameter <span><math><mi>k</mi></math></span>, the goal is to partition the points <span><math><mi>V</mi></math></span> into <span><math><mi>k</mi></math></span> clusters such that the sum of distances between all pairs of the points within the same cluster is minimized.</p><p>The <span><math><mi>k</mi></math></span>-MSC problem is known to be APX-hard on general metrics. The best known approximation algorithms for the problem obtained by Behsaz et al. (2019) achieve an approximation ratio of <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mo>log</mo><mrow><mo>|</mo><mi>V</mi><mo>|</mo></mrow><mo>)</mo></mrow></mrow></math></span> in polynomial time for general metrics and an approximation ratio <span><math><mrow><mn>2</mn><mo>+</mo><mi>ϵ</mi></mrow></math></span> in quasi-polynomial time for metrics with bounded doubling dimension. No approximation schemes for <span><math><mi>k</mi></math></span>-MSC (when <span><math><mi>k</mi></math></span> is part of the input) is known for any non-trivial metrics prior to our work. In fact, most of the previous works rely on the simple fact that there is a 2-approximate reduction from <span><math><mi>k</mi></math></span>-MSC to the balanced <span><math><mi>k</mi></math></span>-median problem and design approximation algorithms for the latter to obtain an approximation for <span><math><mi>k</mi></math></span>-MSC.</p><p>In this paper, we obtain the first Quasi-Polynomial Time Approximation Schemes (QPTAS) for the problem on metrics induced by graphs of bounded treewidth, graphs of bounded highway dimension, graphs of bounded doubling dimensions (including fixed dimensional Euclidean metrics), and planar and minor-free graphs. We bypass the barrier of 2 for <span><math><mi>k</mi></math></span>-MSC by introducing a new clustering problem, which we call min-hub clustering, which is a generalization of balanced <span><math><mi>k</mi></math></span>-median and is a trade off between center-based clustering problems (such as balanced <span><math><mi>k</mi></math></span>-median) and pair-wise clustering (such as Min-Sum <span><math><mi>k</mi></math></span>-clustering). We then show how one can find approximation schemes for Min-hub clustering on certain classes of metrics.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1572528624000392/pdfft?md5=0298fb9c3c75e407870e412a1aae1a26&pid=1-s2.0-S1572528624000392-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528624000392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Min-Sum k-Clustering (k-MSC) problem. Given a set of points in a metric which is represented by an edge-weighted graph G=(V,E) and a parameter k, the goal is to partition the points V into k clusters such that the sum of distances between all pairs of the points within the same cluster is minimized.

The k-MSC problem is known to be APX-hard on general metrics. The best known approximation algorithms for the problem obtained by Behsaz et al. (2019) achieve an approximation ratio of O(log|V|) in polynomial time for general metrics and an approximation ratio 2+ϵ in quasi-polynomial time for metrics with bounded doubling dimension. No approximation schemes for k-MSC (when k is part of the input) is known for any non-trivial metrics prior to our work. In fact, most of the previous works rely on the simple fact that there is a 2-approximate reduction from k-MSC to the balanced k-median problem and design approximation algorithms for the latter to obtain an approximation for k-MSC.

In this paper, we obtain the first Quasi-Polynomial Time Approximation Schemes (QPTAS) for the problem on metrics induced by graphs of bounded treewidth, graphs of bounded highway dimension, graphs of bounded doubling dimensions (including fixed dimensional Euclidean metrics), and planar and minor-free graphs. We bypass the barrier of 2 for k-MSC by introducing a new clustering problem, which we call min-hub clustering, which is a generalization of balanced k-median and is a trade off between center-based clustering problems (such as balanced k-median) and pair-wise clustering (such as Min-Sum k-clustering). We then show how one can find approximation schemes for Min-hub clustering on certain classes of metrics.

分享
查看原文
最小和 k 聚类的近似方案
我们考虑的是最小和 k 聚类(k-MSC)问题。给定一个度量中的点集(由边加权图 G=(V,E) 表示)和一个参数 k,目标是将点 V 划分为 k 个聚类,使得同一聚类中所有点对之间的距离之和最小。Behsaz 等人(2019)针对该问题获得的已知最佳近似算法在一般度量条件下的多项式时间内达到了 O(log|V|)的近似率,在具有约束倍维度的度量条件下的准多项式时间内达到了 2+ϵ 的近似率。在我们的研究之前,还没有针对任何非三维度量的 k-MSC 近似方案(当 k 是输入的一部分时)。事实上,之前的大部分研究都依赖于一个简单的事实,即从 k-MSC 到平衡 k-median 问题有一个 2 近似的还原,并为后者设计近似算法,从而得到 k-MSC 的近似值。在本文中,我们首次获得了该问题的准多项式时间近似方案(QPTAS),该方案适用于有界树宽、有界公路维数、有界倍维数(包括固定维数欧几里得度量)的图以及平面图和无次要图所诱导的度量。我们通过引入一个新的聚类问题(我们称之为 min-hub 聚类),绕过了 k-MSC 的 2 的障碍,它是平衡 k-median 的广义化,是基于中心的聚类问题(如平衡 k-median)和成对聚类问题(如 Min-Sum k-clustering)之间的权衡。然后,我们展示了如何在某些度量类别上找到 Min-hub 聚类的近似方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信