{"title":"Microstructure and properties of FeCoNiCr and FeCoNiCrW high entropy alloy coatings by electro-deposition","authors":"Meiling Dong, Pengwei Liu, Chaohui Wang, Yuhui Wang, Xinyao Tang, Mingxin He, Jiaqi Liu","doi":"10.1016/j.intermet.2024.108492","DOIUrl":null,"url":null,"abstract":"<div><p>The FeCoNiCr and FeCoNiCrW high-entropy alloy coatings, comprising a single solid solution, were successfully obtained by electro-deposition. The microstructure, microhardness, wear properties and corrosion behaviors of both coatings were investigated. The results revealed that both coatings consisted of amorphous phases and the component elements existed as metals and their oxides. Compared with the FeCoNiCr coating, the FeCoNiCrW coating exhibited superior mechanical properties attributed to solution strengthening. Specifically, the microhardness of the FeCoNiCrW coating was 35.9 % higher, and the width of the worn tracks was 8.3 % smaller than those of the FeCoNiCr coating. However, the FeCoNiCrW coating showed more serious adhesive wear than that of FeCoNiCr coating due to its thinner coating which was worn out during wear. The FeCoNiCrW coating has the highest corrosion resistance and the lowest corrosion rate compared to 304 stainless steel and FeCoNiCr coating in 3.5 % NaCl solution, attributed to the formation of a highly stable and resistant passive film.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"175 ","pages":"Article 108492"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096697952400311X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The FeCoNiCr and FeCoNiCrW high-entropy alloy coatings, comprising a single solid solution, were successfully obtained by electro-deposition. The microstructure, microhardness, wear properties and corrosion behaviors of both coatings were investigated. The results revealed that both coatings consisted of amorphous phases and the component elements existed as metals and their oxides. Compared with the FeCoNiCr coating, the FeCoNiCrW coating exhibited superior mechanical properties attributed to solution strengthening. Specifically, the microhardness of the FeCoNiCrW coating was 35.9 % higher, and the width of the worn tracks was 8.3 % smaller than those of the FeCoNiCr coating. However, the FeCoNiCrW coating showed more serious adhesive wear than that of FeCoNiCr coating due to its thinner coating which was worn out during wear. The FeCoNiCrW coating has the highest corrosion resistance and the lowest corrosion rate compared to 304 stainless steel and FeCoNiCr coating in 3.5 % NaCl solution, attributed to the formation of a highly stable and resistant passive film.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.