Uncovering spatiotemporal development patterns of AIDS in China: A study using panel data with Joinpoint Regression analysis and Spatial Clustering

IF 3.8 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Shu-nan Gui , Xiang Zhang , Zhenhui Sun , Yao Yao
{"title":"Uncovering spatiotemporal development patterns of AIDS in China: A study using panel data with Joinpoint Regression analysis and Spatial Clustering","authors":"Shu-nan Gui ,&nbsp;Xiang Zhang ,&nbsp;Zhenhui Sun ,&nbsp;Yao Yao","doi":"10.1016/j.healthplace.2024.103353","DOIUrl":null,"url":null,"abstract":"<div><p>The HIV/AIDS epidemic in China is severe and complex. Comprehensive spatiotemporal analysis provides valuable insights for intervention policy formulation. Previous studies often overlooked local changes in time trends and regional disease development patterns. In this study, we propose a new spatiotemporal analysis method based on the Joinpoint Regression (JPR) model and K-means clustering to refine the division of stages in China's AIDS epidemic and differentiate geographical areas based on development patterns. We then use hotspot analysis to describe the current status of AIDS, presenting a comprehensive view of the epidemic in China from 2004 to 2018. JPR results show China's AIDS incidence generally increased during 2004–2018 (AAPC = 23.2), with a significant turning point in 2012. Time series feature clustering classifies the country into three regions: Southwest, Central and Eastern, and the other region. Each region corresponds to different epidemic causes and transmission pathways, informing targeted interventions. Hotspot analysis reveals the Southwest region as the most severely affected area, requiring intensified prevention and control efforts. This study offers a novel from both time and space dimensions for understanding and combating the AIDS epidemic, furnishing valuable references for policymakers in the further development of strategies.</p></div>","PeriodicalId":49302,"journal":{"name":"Health & Place","volume":"90 ","pages":"Article 103353"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health & Place","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1353829224001813","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

The HIV/AIDS epidemic in China is severe and complex. Comprehensive spatiotemporal analysis provides valuable insights for intervention policy formulation. Previous studies often overlooked local changes in time trends and regional disease development patterns. In this study, we propose a new spatiotemporal analysis method based on the Joinpoint Regression (JPR) model and K-means clustering to refine the division of stages in China's AIDS epidemic and differentiate geographical areas based on development patterns. We then use hotspot analysis to describe the current status of AIDS, presenting a comprehensive view of the epidemic in China from 2004 to 2018. JPR results show China's AIDS incidence generally increased during 2004–2018 (AAPC = 23.2), with a significant turning point in 2012. Time series feature clustering classifies the country into three regions: Southwest, Central and Eastern, and the other region. Each region corresponds to different epidemic causes and transmission pathways, informing targeted interventions. Hotspot analysis reveals the Southwest region as the most severely affected area, requiring intensified prevention and control efforts. This study offers a novel from both time and space dimensions for understanding and combating the AIDS epidemic, furnishing valuable references for policymakers in the further development of strategies.

揭示中国艾滋病的时空发展模式:利用联结点回归分析和空间聚类的面板数据研究
中国艾滋病疫情严峻而复杂。全面的时空分析为制定干预政策提供了宝贵的见解。以往的研究往往忽略了局部地区的时间趋势变化和区域疾病发展模式。在本研究中,我们提出了一种基于连接点回归(JPR)模型和 K-means 聚类的新时空分析方法,以细化中国艾滋病疫情的阶段划分,并根据发展模式区分地理区域。然后,我们利用热点分析描述了艾滋病的现状,全面展示了 2004 年至 2018 年中国艾滋病的流行情况。JPR结果显示,2004-2018年间,中国艾滋病发病率总体呈上升趋势(AAPC=23.2),2012年出现明显拐点。时间序列特征聚类将中国划分为三个区域:西南地区、中东部地区和其他地区。每个地区对应不同的流行原因和传播途径,从而为有针对性的干预措施提供依据。热点分析显示,西南地区是疫情最严重的地区,需要加强预防和控制工作。这项研究从时间和空间两个维度为了解和抗击艾滋病疫情提供了新的视角,为决策者进一步制定战略提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Health & Place
Health & Place PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
7.70
自引率
6.20%
发文量
176
审稿时长
29 days
期刊介绍: he journal is an interdisciplinary journal dedicated to the study of all aspects of health and health care in which place or location matters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信