Oxygen vacancies promoted hydrogen production from methanol aqueous phase reforming over MgAl−LDHs supported plasmonic Ru nanoparticles catalyst

IF 4.7 2区 化学 Q2 CHEMISTRY, PHYSICAL
{"title":"Oxygen vacancies promoted hydrogen production from methanol aqueous phase reforming over MgAl−LDHs supported plasmonic Ru nanoparticles catalyst","authors":"","doi":"10.1016/j.apcata.2024.119964","DOIUrl":null,"url":null,"abstract":"<div><p>Catalytic aqueous phase reforming of methanol is a promising process for the sustainable hydrogen production. The search for highly efficient heterogeneous catalyst is a topic of interest. Herein, we report oxygen vacancies enriched MgAl−LDHs supported plasmonic Ru nanoparticles catalyst exhibit excellent photocatalytic performance for efficient hydrogen production at 150 ºC under light irradiation. Characterizations demonstrate abundant oxygen vacancies are introduced into MgAl−LDHs via “memory effect”. The local electron transfer from oxygen vacancies of the MgAl−LDHs to the Ru nanoparticles leading the formation of electron-rich Ru species, which promote the dehydrogenation of methanol under light irradiation. In situ DRIFTS demonstrated a redox mechanism of water-gas shift reaction due to the existence of oxygen vacancies, which resulted a faster hydrogen production rate. This work displays a facile strategy for synthesis of oxygen vacancies rich LDH supported metal nanoparticles catalysts and deep understanding into the pathway and mechanism toward the effective hydrogen production.</p></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X24004095","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Catalytic aqueous phase reforming of methanol is a promising process for the sustainable hydrogen production. The search for highly efficient heterogeneous catalyst is a topic of interest. Herein, we report oxygen vacancies enriched MgAl−LDHs supported plasmonic Ru nanoparticles catalyst exhibit excellent photocatalytic performance for efficient hydrogen production at 150 ºC under light irradiation. Characterizations demonstrate abundant oxygen vacancies are introduced into MgAl−LDHs via “memory effect”. The local electron transfer from oxygen vacancies of the MgAl−LDHs to the Ru nanoparticles leading the formation of electron-rich Ru species, which promote the dehydrogenation of methanol under light irradiation. In situ DRIFTS demonstrated a redox mechanism of water-gas shift reaction due to the existence of oxygen vacancies, which resulted a faster hydrogen production rate. This work displays a facile strategy for synthesis of oxygen vacancies rich LDH supported metal nanoparticles catalysts and deep understanding into the pathway and mechanism toward the effective hydrogen production.

氧空位促进了 MgAl-LDHs 支持的等离子 Ru 纳米粒子催化剂在甲醇水相重整中制氢
甲醇的水相催化重整是一种前景广阔的可持续制氢工艺。寻找高效的异相催化剂是一个令人感兴趣的话题。在此,我们报告了富含氧空位的 MgAl-LDHs 支承质子 Ru 纳米粒子催化剂在 150 ºC 的光照条件下高效制氢的优异光催化性能。表征结果表明,MgAl-LDHs 中通过 "记忆效应 "引入了大量的氧空位。局部电子从 MgAl-LDHs 的氧空位转移到 Ru 纳米粒子,从而形成富电子 Ru 物种,在光照射下促进甲醇的脱氢反应。原位 DRIFTS 显示,由于氧空位的存在,水气转换反应的氧化还原机制加快了氢气的产生速率。这项工作展示了一种简便的富氧空位 LDH 支撑金属纳米颗粒催化剂合成策略,并深入了解了有效制氢的途径和机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Catalysis A: General
Applied Catalysis A: General 化学-环境科学
CiteScore
9.00
自引率
5.50%
发文量
415
审稿时长
24 days
期刊介绍: Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications. Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信