Optimal dividends and capital injection: A general Lévy model with extensions to regime-switching models

IF 1.9 2区 经济学 Q2 ECONOMICS
Dante Mata López , Kei Noba , José-Luis Pérez , Kazutoshi Yamazaki
{"title":"Optimal dividends and capital injection: A general Lévy model with extensions to regime-switching models","authors":"Dante Mata López ,&nbsp;Kei Noba ,&nbsp;José-Luis Pérez ,&nbsp;Kazutoshi Yamazaki","doi":"10.1016/j.insmatheco.2024.08.007","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies a general Lévy process model of the bail-out optimal dividend problem with an exponential time horizon, and further extends it to the regime-switching model. We first show the optimality of a double barrier strategy in the single-regime setting with a concave terminal payoff function. This is then applied to show the optimality of a Markov-modulated double barrier strategy in the regime-switching model via contraction mapping arguments. We solve these for a general Lévy model with both positive and negative jumps, greatly generalizing the existing results on spectrally one-sided models.</p></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"119 ","pages":"Pages 210-225"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668724000970","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies a general Lévy process model of the bail-out optimal dividend problem with an exponential time horizon, and further extends it to the regime-switching model. We first show the optimality of a double barrier strategy in the single-regime setting with a concave terminal payoff function. This is then applied to show the optimality of a Markov-modulated double barrier strategy in the regime-switching model via contraction mapping arguments. We solve these for a general Lévy model with both positive and negative jumps, greatly generalizing the existing results on spectrally one-sided models.

最优股息和注资:扩展到制度转换模型的一般莱维模型
本文研究了指数时间跨度下救助最优红利问题的一般莱维过程模型,并将其进一步扩展到制度转换模型。我们首先证明了在单一制度背景下,双障碍策略的最优性,其终端报酬函数为凹型。然后,我们通过收缩映射论证,证明了在制度转换模型中马尔可夫调制双障碍策略的最优性。我们为具有正跳和负跳的一般莱维模型解决了这些问题,极大地推广了光谱单边模型的现有结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Insurance Mathematics & Economics
Insurance Mathematics & Economics 管理科学-数学跨学科应用
CiteScore
3.40
自引率
15.80%
发文量
90
审稿时长
17.3 weeks
期刊介绍: Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world. Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信