{"title":"Development and validation of machine learning models for predicting cancer-related fatigue in lymphoma survivors","authors":"","doi":"10.1016/j.ijmedinf.2024.105630","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>New cases of lymphoma are rising, and the symptom burden, like cancer-related fatigue (CRF), severely impacts the quality of life of lymphoma survivors. However, clinical diagnosis and treatment of CRF are inadequate and require enhancement.</p></div><div><h3>Objective</h3><p>The main objective of this study is to construct machine learning-based CRF prediction models for lymphoma survivors to help healthcare professionals accurately identify the CRF population and better personalize treatment and care for patients.</p></div><div><h3>Methods</h3><p>A cross-sectional study in China recruited lymphoma patients from June 2023 to March 2024, dividing them into two datasets for model construction and external validation. Six machine learning algorithms were used in this study: Logistic Regression (LR), Random Forest, Single Hidden Layer Neural Network, Support Vector Machine, eXtreme Gradient Boosting, and Light Gradient Boosting Machine (LightGBM). Performance metrics like the area under the receiver operating characteristic (AUROC) and calibration curves were compared. The clinical applicability was assessed by decision curve, and Shapley additive explanations was employed to explain variable significance.</p></div><div><h3>Results</h3><p>CRF incidence was 40.7 % (dataset I) and 44.8 % (dataset II). LightGBM showed strong performance in training and internal validation. LR excelled in external validation with the highest AUROC and best calibration. Pain, total protein, physical function, and sleep disturbance were important predictors of CRF.</p></div><div><h3>Conclusion</h3><p>The study presents a machine learning-based CRF prediction model for lymphoma patients, offering dynamic, data-driven assessments that could enhance the development of automated CRF screening tools for personalized management in clinical practice.</p></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386505624002934","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
New cases of lymphoma are rising, and the symptom burden, like cancer-related fatigue (CRF), severely impacts the quality of life of lymphoma survivors. However, clinical diagnosis and treatment of CRF are inadequate and require enhancement.
Objective
The main objective of this study is to construct machine learning-based CRF prediction models for lymphoma survivors to help healthcare professionals accurately identify the CRF population and better personalize treatment and care for patients.
Methods
A cross-sectional study in China recruited lymphoma patients from June 2023 to March 2024, dividing them into two datasets for model construction and external validation. Six machine learning algorithms were used in this study: Logistic Regression (LR), Random Forest, Single Hidden Layer Neural Network, Support Vector Machine, eXtreme Gradient Boosting, and Light Gradient Boosting Machine (LightGBM). Performance metrics like the area under the receiver operating characteristic (AUROC) and calibration curves were compared. The clinical applicability was assessed by decision curve, and Shapley additive explanations was employed to explain variable significance.
Results
CRF incidence was 40.7 % (dataset I) and 44.8 % (dataset II). LightGBM showed strong performance in training and internal validation. LR excelled in external validation with the highest AUROC and best calibration. Pain, total protein, physical function, and sleep disturbance were important predictors of CRF.
Conclusion
The study presents a machine learning-based CRF prediction model for lymphoma patients, offering dynamic, data-driven assessments that could enhance the development of automated CRF screening tools for personalized management in clinical practice.
期刊介绍:
International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings.
The scope of journal covers:
Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.;
Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc.
Educational computer based programs pertaining to medical informatics or medicine in general;
Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.