Uniform Poincaré inequalities for the Discrete de Rham complex on general domains

IF 1.4 Q2 MATHEMATICS, APPLIED
Daniele A. Di Pietro, Marien-Lorenzo Hanot
{"title":"Uniform Poincaré inequalities for the Discrete de Rham complex on general domains","authors":"Daniele A. Di Pietro,&nbsp;Marien-Lorenzo Hanot","doi":"10.1016/j.rinam.2024.100496","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we prove Poincaré inequalities for the Discrete de Rham (DDR) sequence on a general connected polyhedral domain <span><math><mi>Ω</mi></math></span> of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. We unify the ideas behind the inequalities for all three operators in the sequence, deriving new proofs for the Poincaré inequalities for the gradient and the divergence, and extending the available Poincaré inequality for the curl to domains with arbitrary second Betti numbers. A key preliminary step consists in deriving “mimetic” Poincaré inequalities giving the existence and continuity of the solutions to topological balance problems useful in general discrete geometric settings. As an example of application, we study the stability of a novel DDR scheme for the magnetostatics problem on domains with general topology.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100496"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000669/pdfft?md5=0cda3366d247c7826dce49cebdb4830d&pid=1-s2.0-S2590037424000669-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we prove Poincaré inequalities for the Discrete de Rham (DDR) sequence on a general connected polyhedral domain Ω of R3. We unify the ideas behind the inequalities for all three operators in the sequence, deriving new proofs for the Poincaré inequalities for the gradient and the divergence, and extending the available Poincaré inequality for the curl to domains with arbitrary second Betti numbers. A key preliminary step consists in deriving “mimetic” Poincaré inequalities giving the existence and continuity of the solutions to topological balance problems useful in general discrete geometric settings. As an example of application, we study the stability of a novel DDR scheme for the magnetostatics problem on domains with general topology.

一般域上离散德拉姆复数的均匀波恩卡列不等式
在本文中,我们证明了 R3 的一般连通多面体域 Ω 上的离散德拉姆(DDR)序列的波卡尔不等式。我们统一了序列中所有三个算子的不等式背后的思想,推导出梯度和发散的 Poincaré 不等式的新证明,并将卷曲的 Poincaré 不等式扩展到具有任意第二贝蒂数的域。一个关键的初步步骤是推导出 "模仿 "波恩卡列不等式,给出在一般离散几何环境中有用的拓扑平衡问题解的存在性和连续性。作为一个应用实例,我们研究了在具有一般拓扑结构的域上磁静力问题的新型 DDR 方案的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信