Thin film equations with nonlinear deterministic and stochastic perturbations

IF 1.3 2区 数学 Q1 MATHEMATICS
Oleksiy Kapustyan , Olha Martynyuk , Oleksandr Misiats , Oleksandr Stanzhytskyi
{"title":"Thin film equations with nonlinear deterministic and stochastic perturbations","authors":"Oleksiy Kapustyan ,&nbsp;Olha Martynyuk ,&nbsp;Oleksandr Misiats ,&nbsp;Oleksandr Stanzhytskyi","doi":"10.1016/j.na.2024.113646","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider stochastic thin-film equation with nonlinear drift terms, colored Gaussian Stratonovich noise, as well as nonlinear colored Wiener noise. By means of Trotter–Kato-type decomposition into deterministic and stochastic parts, we couple both of these dynamics via a discrete-in-time scheme, and establish its convergence to a non-negative weak martingale solution.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"250 ","pages":"Article 113646"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24001652/pdfft?md5=f3d21fbe23f0caa335b0a9f697a81c70&pid=1-s2.0-S0362546X24001652-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001652","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider stochastic thin-film equation with nonlinear drift terms, colored Gaussian Stratonovich noise, as well as nonlinear colored Wiener noise. By means of Trotter–Kato-type decomposition into deterministic and stochastic parts, we couple both of these dynamics via a discrete-in-time scheme, and establish its convergence to a non-negative weak martingale solution.

具有非线性确定性和随机扰动的薄膜方程
在本文中,我们考虑了带有非线性漂移项、彩色高斯斯特拉顿诺维奇噪声以及非线性彩色维纳噪声的随机薄膜方程。通过将其分解为确定性和随机性部分的 Trotter-Kato- 型方法,我们通过离散-实时方案将这两种动力学耦合在一起,并确定其收敛于非负弱马氏解法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信