Artem S. Borisov , Oleg I. Siidra , Natalia S. Vlasenko , Natalia V. Platonova , Thies Schuldt , Mason Neuman , Harald Strauss , Astrid Holzheid
{"title":"The Yadovitaya fumarole, Tolbachik volcano: A comprehensive mineralogical and geochemical study and driving factors for mineral diversity","authors":"Artem S. Borisov , Oleg I. Siidra , Natalia S. Vlasenko , Natalia V. Platonova , Thies Schuldt , Mason Neuman , Harald Strauss , Astrid Holzheid","doi":"10.1016/j.chemer.2024.126179","DOIUrl":null,"url":null,"abstract":"<div><p>Active volcanic fumaroles are one of the most spectacular natural objects in terms of mineral diversity. The Great Tolbachik Fissure Eruption (GTFE) (Kamchatka) fumaroles are renowned for its exceptional number of mineral species. The total number of minerals that have been reliably identified from this particular locality exceeds 400, which is approximately 6.5 % of all known minerals to date. In this study, we employ a comprehensive approach (bulk chemistry, microprobe analysis, powder X-ray diffraction, HR X-ray computed tomography, and <sup>34</sup>S, <sup>18</sup>O, and <sup>65</sup>Cu isotope measurements) to study the distribution of primary exhalation and secondary mineral assemblages and to reveal the driving factors responsible for the unique mineral diversity in the Yadovitaya fumarole. High oxygen fugacity, the interaction of minerals with atmospheric oxygen and water from seasonal precipitation (leading to abundant hydrated mineral associations), temperature conditions controlling the spatial distribution of mineral-forming components, gas-rock interactions, and basaltic scoria morphology perfect for the crystallization of various minerals are some of the factors revealed. The combination of these factors caused a stepwise mineralization resulting in 12 zones of the Yadovitaya fumarole with characteristic mineral assemblages. The described mineralogy of the Yadovitaya fumarole demonstrates a consistent spatial evolution of fumarolic mineral assemblages that vary in complexity, chemistry, and interaction patterns with the surrounding environment. The examination of mineralogical and geochemical data yields novel insights into the active volcanic systems that are associated with the formation of distinct oxidation-type fumaroles.</p></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"84 3","pages":"Article 126179"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0009281924001041/pdfft?md5=5338f11cba91d750e8b12780372e6e1f&pid=1-s2.0-S0009281924001041-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Der Erde-Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009281924001041","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Active volcanic fumaroles are one of the most spectacular natural objects in terms of mineral diversity. The Great Tolbachik Fissure Eruption (GTFE) (Kamchatka) fumaroles are renowned for its exceptional number of mineral species. The total number of minerals that have been reliably identified from this particular locality exceeds 400, which is approximately 6.5 % of all known minerals to date. In this study, we employ a comprehensive approach (bulk chemistry, microprobe analysis, powder X-ray diffraction, HR X-ray computed tomography, and 34S, 18O, and 65Cu isotope measurements) to study the distribution of primary exhalation and secondary mineral assemblages and to reveal the driving factors responsible for the unique mineral diversity in the Yadovitaya fumarole. High oxygen fugacity, the interaction of minerals with atmospheric oxygen and water from seasonal precipitation (leading to abundant hydrated mineral associations), temperature conditions controlling the spatial distribution of mineral-forming components, gas-rock interactions, and basaltic scoria morphology perfect for the crystallization of various minerals are some of the factors revealed. The combination of these factors caused a stepwise mineralization resulting in 12 zones of the Yadovitaya fumarole with characteristic mineral assemblages. The described mineralogy of the Yadovitaya fumarole demonstrates a consistent spatial evolution of fumarolic mineral assemblages that vary in complexity, chemistry, and interaction patterns with the surrounding environment. The examination of mineralogical and geochemical data yields novel insights into the active volcanic systems that are associated with the formation of distinct oxidation-type fumaroles.
期刊介绍:
GEOCHEMISTRY was founded as Chemie der Erde 1914 in Jena, and, hence, is one of the oldest journals for geochemistry-related topics.
GEOCHEMISTRY (formerly Chemie der Erde / Geochemistry) publishes original research papers, short communications, reviews of selected topics, and high-class invited review articles addressed at broad geosciences audience. Publications dealing with interdisciplinary questions are particularly welcome. Young scientists are especially encouraged to submit their work. Contributions will be published exclusively in English. The journal, through very personalized consultation and its worldwide distribution, offers entry into the world of international scientific communication, and promotes interdisciplinary discussion on chemical problems in a broad spectrum of geosciences.
The following topics are covered by the expertise of the members of the editorial board (see below):
-cosmochemistry, meteoritics-
igneous, metamorphic, and sedimentary petrology-
volcanology-
low & high temperature geochemistry-
experimental - theoretical - field related studies-
mineralogy - crystallography-
environmental geosciences-
archaeometry