Nonlinear characteristics and radial-bending-torsional vibration of a blade with breathing crack

IF 4.3 2区 工程技术 Q1 ACOUSTICS
{"title":"Nonlinear characteristics and radial-bending-torsional vibration of a blade with breathing crack","authors":"","doi":"10.1016/j.jsv.2024.118734","DOIUrl":null,"url":null,"abstract":"<div><p>Rotor failures due to cracked blades are frequently observed in rotating machinery. The identification of cracking state of rotating blade based on vibration characteristics has garnered a lot of attention. However, nonlinear characteristics and vibration combining in radial, bending and torsional directions of a rotating blade induced by the crack breathing is yet not clear. This paper proposes a radial-bending-torsional dynamic model of rotating blade with breathing crack. A time-varying integration method is proposed for determining the crack state based on the strain energy release rate. The crack breathing behavior is described by Boolean operation and the numerical integration are applied to open or close the crack. The model is validated through modal analysis, vibration responses and contact state of crack surface. Frequency veering is changed between the 2nd flap and 1st edgewise frequency due to the existence of crack. Strong nonlinear behaviors are found in the radial and torsional vibrations because of the crack breathing. Nonlinearities are also found in the combined vibrations between the radial-bending and the bending-torsional directions. Radial and torsional vibration amplitude levels can be used as an indication of blade crack failure, but the applicability depends on the absolute response decided by the aerodynamic excitation and resonant vibration. These findings can serve as guidance in crack identification and cracking state monitoring of rotating blades.</p></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X24004966","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Rotor failures due to cracked blades are frequently observed in rotating machinery. The identification of cracking state of rotating blade based on vibration characteristics has garnered a lot of attention. However, nonlinear characteristics and vibration combining in radial, bending and torsional directions of a rotating blade induced by the crack breathing is yet not clear. This paper proposes a radial-bending-torsional dynamic model of rotating blade with breathing crack. A time-varying integration method is proposed for determining the crack state based on the strain energy release rate. The crack breathing behavior is described by Boolean operation and the numerical integration are applied to open or close the crack. The model is validated through modal analysis, vibration responses and contact state of crack surface. Frequency veering is changed between the 2nd flap and 1st edgewise frequency due to the existence of crack. Strong nonlinear behaviors are found in the radial and torsional vibrations because of the crack breathing. Nonlinearities are also found in the combined vibrations between the radial-bending and the bending-torsional directions. Radial and torsional vibration amplitude levels can be used as an indication of blade crack failure, but the applicability depends on the absolute response decided by the aerodynamic excitation and resonant vibration. These findings can serve as guidance in crack identification and cracking state monitoring of rotating blades.

带呼吸裂纹叶片的非线性特性和径向弯曲扭转振动
旋转机械中经常出现因叶片开裂而导致的转子故障。根据振动特征识别旋转叶片的开裂状态已引起了广泛关注。然而,由裂纹呼吸引起的旋转叶片在径向、弯曲和扭转方向上的非线性特征和振动组合尚未明确。本文提出了带有呼吸裂纹的旋转叶片径向-弯曲-扭转动力学模型。提出了一种基于应变能释放率的时变积分法来确定裂纹状态。裂纹呼吸行为由布尔运算描述,数值积分用于打开或关闭裂纹。该模型通过模态分析、振动响应和裂纹表面的接触状态进行了验证。由于裂纹的存在,频率矢量在第二瓣和第一边缘频率之间发生了变化。由于裂纹的呼吸作用,在径向和扭转振动中发现了强烈的非线性行为。在径向-弯曲方向和弯曲-扭转方向的组合振动中也发现了非线性现象。径向和扭转振动振幅水平可用作叶片裂纹失效的指示,但其适用性取决于空气动力激励和共振振动所决定的绝对响应。这些发现可为旋转叶片的裂纹识别和裂纹状态监测提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Sound and Vibration
Journal of Sound and Vibration 工程技术-工程:机械
CiteScore
9.10
自引率
10.60%
发文量
551
审稿时长
69 days
期刊介绍: The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application. JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信