Nikolaj Bläser , Búgvi Benjamin Magnussen , Gabriel Fuentes , Hua Lu , Line Reinhardt
{"title":"MATNEC: AIS data-driven environment-adaptive maritime traffic network construction for realistic route generation","authors":"Nikolaj Bläser , Búgvi Benjamin Magnussen , Gabriel Fuentes , Hua Lu , Line Reinhardt","doi":"10.1016/j.trc.2024.104853","DOIUrl":null,"url":null,"abstract":"<div><p>In the context of the global maritime industry, which plays a vital role in international trade, navigating vessels safely and efficiently remains a complex challenge, especially due to the absence of structured road-like networks on the open seas. This paper proposes <span>MATNEC</span>, a framework for constructing a data-driven Maritime Traffic Network (MTN), represented as a graph that facilitates realistic route generation. Our approach, leveraging Automatic Identification System (AIS) data along with portcall and global coastline datasets, aims to address key challenges in MTN construction from AIS data observed in the literature, particularly the imprecise placement of network nodes and sub-optimal definition of network edges. At the core of <span>MATNEC</span> is a novel incremental clustering algorithm that is capable of intelligently determining the placement and distribution of the graph nodes in a diverse set of environments, based on several environmental factors. To ensure that the resulting MTN generates maritime routes as realistic as possible, we design a novel edge mapping algorithm that defines the edges of the network by treating the mapping of AIS trajectories to network nodes as an optimisation problem. Finally, due to the absence of a unified approach in the literature for measuring the efficacy of an MTN’s ability to generate realistic routes, we propose a novel methodology to address this gap. Utilising our proposed evaluation methodology, we compare <span>MATNEC</span> with existing methods from literature. The outcome of these experiments affirm the enhanced performance of <span>MATNEC</span> compared to previous approaches.</p></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0968090X24003747/pdfft?md5=0f93587aa24aa8b2473134b6edb622fa&pid=1-s2.0-S0968090X24003747-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X24003747","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of the global maritime industry, which plays a vital role in international trade, navigating vessels safely and efficiently remains a complex challenge, especially due to the absence of structured road-like networks on the open seas. This paper proposes MATNEC, a framework for constructing a data-driven Maritime Traffic Network (MTN), represented as a graph that facilitates realistic route generation. Our approach, leveraging Automatic Identification System (AIS) data along with portcall and global coastline datasets, aims to address key challenges in MTN construction from AIS data observed in the literature, particularly the imprecise placement of network nodes and sub-optimal definition of network edges. At the core of MATNEC is a novel incremental clustering algorithm that is capable of intelligently determining the placement and distribution of the graph nodes in a diverse set of environments, based on several environmental factors. To ensure that the resulting MTN generates maritime routes as realistic as possible, we design a novel edge mapping algorithm that defines the edges of the network by treating the mapping of AIS trajectories to network nodes as an optimisation problem. Finally, due to the absence of a unified approach in the literature for measuring the efficacy of an MTN’s ability to generate realistic routes, we propose a novel methodology to address this gap. Utilising our proposed evaluation methodology, we compare MATNEC with existing methods from literature. The outcome of these experiments affirm the enhanced performance of MATNEC compared to previous approaches.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.